POJ 1179 IOI1998 Polygon
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 5472 | Accepted: 2334 |
Description

On the first move, one of the edges is removed. Subsequent moves involve the following steps:
�pick an edge E and the two vertices V1 and V2 that are linked by E; and
�replace them by a new vertex, labelled with the result of performing the operation indicated in E on the labels of V1 and V2.
The game ends when there are no more edges, and its score is the label of the single vertex remaining.
Consider the polygon of Figure 1. The player started by removing edge 3. After that, the player picked edge 1, then edge 4, and, finally, edge 2. The score is 0. 
Write a program that, given a polygon, computes the highest possible score and lists all the edges that, if removed on the first move, can lead to a game with that score.
Input
3 <= N <= 50
For any sequence of moves, vertex labels are in the range [-32768,32767].
Output
Sample Input
4
t -7 t 4 x 2 x 5
Sample Output
33
1 2
Source
#include <iostream>
#include <cstring>
#include <cstdio>
const int N = + ;
using namespace std ;
int n,a[N];
char ss[N];
long long f[N][N],g[N][N],ans; void Init()
{
scanf("%d",&n);
for(int i = ; i <= n ; ++i)
{
cin>>ss[i]>>a[i];
a[n+i]=a[i],ss[n+i]=ss[i];
}
} void Solve( )
{
for(int i = ; i <= (n<<) ; ++i) for(int j = ; j <= (n<<) ; ++j)f[i][j] = -0x3f3f3f3f ;
for(int i = ; i <= (n<<) ; ++i) for(int j = ; j <= (n<<) ; ++j)g[i][j] = 0x3f3f3f3f ;
for(int i = ; i <= (n<<) ; ++i)
{
if(ss[i+]=='t')
f[i][i+] = g[i][i+] = a[i] + a[i+];
else
f[i][i+] = g[i][i+] = a[i] * a[i+];
f[i][i] = g[i][i] = a[i];
}
long long ans = -0x3f3f3f3f ;
for(int i = (n<<);--i;)
for(int j = i + ; j <=(n<<);++j)
for(int k = i;k<j;++k)
if(ss[k+] == 't')
{
f[i][j] = max(f[i][j],f[i][k]+f[k+][j]);
g[i][j] = min(g[i][j],g[i][k]+g[k+][j]);
}
else
{
long long int a = f[i][k]*g[k+][j],b = f[i][k]*f[k+][j];
long long int c = g[i][k]*f[k+][j],d = g[i][k]*g[k+][j];
f[i][j] = max(f[i][j],max(max(a,b),max(c,d)));
g[i][j] = min(g[i][j],min(min(a,b),min(c,d)));
}
for(int i = ; i<= n ;++i)
ans = max(ans,f[i][i+n-]);
printf("%lld\n",ans);
for(int i=;i<=n;++i)
if(f[i][i+n-] == ans)
printf("%d ",i);
puts("");
} int main( )
{
// freopen("polygon.in","r",stdin);
// freopen("polygon.out","w",stdout);
Init();
Solve();
fclose(stdin);
fclose(stdout);
return ;
}
POJ 1179 IOI1998 Polygon的更多相关文章
- 【POJ 1179】Polygon
[原题链接]传送门 [题解思路] 1.第一感觉没有其他做法,想到动态规划,去环,区间dp 2.f[l,r]表示[l,r]内的最大值,考虑转移 3.最大值分加法和乘法,其中乘法不一定由两个要求合并的区间 ...
- DP中环形处理 +(POJ 1179 题解)
DP中环形处理 对于DP中存在环的情况,大致有两种处理的方法: 对于很多的区间DP来说,很常见的方法就是把原来的环从任意两点断开(注意并不是直接删掉这条边),在复制一条一模一样的链在这条链的后方,当做 ...
- IOI1998 Polygon [区间dp]
[IOI1998]Polygon 题意翻译 题目可能有些许修改,但大意一致 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符号+(加)或符号*(乘 ...
- Mark一下, dp状态转移方程写对,可是写代码都错,poj 1651 poj 1179
dp题: 1.写状态转移方程; 2.考虑初始化边界,有意义的赋定值.还没计算的赋边界值: 3.怎么写代码自底向上计算最优值 今天做了几个基础dp,所有是dp方程写对可是初始化以及计算写错 先是poj ...
- [IOI1998]Polygon(区间dp)
[IOI1998]Polygon 题意翻译 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符号+(加)或符号*(乘积)标记. 第一步,删除其中一条 ...
- poj 1179 Polygon
http://poj.org/problem?id=1179 Polygon Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- POJ 1179 - Polygon - [区间DP]
题目链接:http://poj.org/problem?id=1179 Time Limit: 1000MS Memory Limit: 10000K Description Polygon is a ...
- poj 1179 $Polygon$(断环成链)
Polygon \(solution:\) upd:还是多讲一下,这道题基本上可以说是一道思维题.一道结论题.一道考验你动态规划基本功是否扎实的题目.因为这道题的数据范围很小,思考一下总能想到断环成链 ...
- IOI 98 (POJ 1179)Polygon(区间DP)
很容易想到枚举第一步切掉的边,然后再计算能够产生的最大值. 联想到区间DP,令dp[i][l][r]为第一步切掉第i条边后从第i个顶点起区间[l,r]能够生成的最大值是多少. 但是状态不好转移,因为操 ...
随机推荐
- js去除重复数值
var c=[2,4,3,5,2,2,2], a = {}, i = 0; for(;i<c.length;i++){ a[c[i]] = 1 //利用对象名称不能重复的特性来去重 } c=[] ...
- unity 嵌入 百度分享 与 游戏内购物 iap
原地址:http://blog.csdn.net/u012085988/article/details/18268869 最近老板让在unity项目里实现分享与内购功能,还要ios和android两个 ...
- SDUT 1646 Complicated Expressions
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1646 题意 : 话说我根本没读题,,,因为实在 ...
- table 表头固定
<html> <head> <title>Test</title> <style type="text/css"> .d ...
- Java程序发展之路
- SPRING IN ACTION 第4版笔记-第四章Aspect-oriented Spring-001-什么是AOP
一. Aspect就是把会在应用中的不同地方重复出现的非业务功能的模块化,比如日志.事务.安全.缓存 In software development, functions that span mult ...
- Android-锁屏功能
当屏幕多久没有点击的时候,进行某种操作就是所谓的锁屏功能. onCreate: public void addRunnable() { handler.postDelayed(runnable, Co ...
- WinForm实现简单的拖拽功能(C#)(2)
首先创建一个winform应用程序,添加listbox1与listbox2,拖拽listbox1的项到listbox2上去. 具体代码如下 namespace OLE拖拽{ public partia ...
- Linux复制指定目录下的文件夹结构
[root@ebs12vis ~]# su - applmgr[applmgr@ebs12vis ~]$ cd $APPL_TOP/inv[applmgr@ebs12vis inv]$ find . ...
- com.google.common.eventbus.EventBus介绍
以下内容直接翻译了EventBus的注释: com.google.common.eventbus.EventBus介绍: 首先这个类是线程安全的, 分发事件到监听器,并提供相应的方式让监听器注册它们自 ...