2011-05-25 17:21

非刚性图像配准 matlab简单示例 demons算法,

% Clean clc; clear all; close all;

% Compile the mex files %compile_c_files

% Read two images I1=im2double(imread('ssftrinew1.png')); 
I2=im2double(imread('ssftri.png'));

% Set static and moving image S=I2; M=I1;

% Alpha (noise) constant alpha=2.5;

% Velocity field smoothing kernel Hsmooth=fspecial('gaussian',[60 60],10);

% The transformation fields Tx=zeros(size(M)); Ty=zeros(size(M)); Tz=zeros(size(M));

[Sy,Sx] = gradient(S); for itt=1:200      % Difference image between moving and static image         Idiff=M-S;

% Default demon force, (Thirion 1998)         %Ux = -(Idiff.*Sx)./((Sx.^2+Sy.^2)+Idiff.^2);         %Uy = -(Idiff.*Sy)./((Sx.^2+Sy.^2)+Idiff.^2);

% Extended demon force. With forces from the gradients from both         % moving as static image. (Cachier 1999, He Wang 2005)         [My,Mx] = gradient(M);         Ux = -Idiff.*  ((Sx./((Sx.^2+Sy.^2)+alpha^2*Idiff.^2))+(Mx./((Mx.^2+My.^2)+alpha^2*Idiff.^2)));        
Uy = -Idiff.* 
((Sy./((Sx.^2+Sy.^2)+alpha^2*Idiff.^2))+(My./((Mx.^2+My.^2)+alpha^2*Idiff.^2)));           % When divided by zero         Ux(isnan(Ux))=0; Uy(isnan(Uy))=0;

% Smooth the transformation field         Uxs=3*imfilter(Ux,Hsmooth);         Uys=3*imfilter(Uy,Hsmooth);

% Add the new transformation field to the total transformation field.         Tx=Tx+Uxs;         Ty=Ty+Uys;         %M=movepixels(I1,Tx,Ty,Tz,0);         M=movepixels_2d_double(I1,Tx,Ty,0); end gridelment=gridshow(); gridelment=movepixels_2d_double(im2double(gridelment),Tx,Ty,0); subplot(1,3,1), imshow(I1,[]); title('image 1'); subplot(1,3,2), imshow(I2,[]); title('image 2'); subplot(1,3,3), imshow(M,[]); title('Registered image 1'); figure,subplot(131),imshow(I1),subplot(132),imshow(abs(I2-M)),subplot(133),imshow(abs(I2-I1)) figure,imshow(gridelment)

function gridelment=gridshow() gridelment=ones(256,256)*255; for i=1:5:256     gridelment(i,:)=0;     end for j=1:5:256         gridelment(:,j)=0; end gridelment=uint8(gridelment); imshow(gridelment);

function Iout=movepixels_2d_double(Iin,Tx,Ty,mode) % This function movepixels, will translate the pixels of an image %  according to x and y translation images (bilinear interpolated). % %  Iout = movepixels_2d_double(I,Tx,Ty,mode); % % Inputs; %   Tx, Ty: The transformation images, describing the %             (backwards) translation of every pixel in x and y direction. %   mode: If 0: linear interpolation and outside pixels set to nearest pixel %            1: linear interpolation and outside pixels set to zero %            (cubic interpolation only supported by compiled mex file) %            2: cubic interpolation and outsite pixels set to nearest pixel %            3: cubic interpolation and outside pixels set to zero % % Outputs, %   Iout : The transformed image % % Function is written by D.Kroon University of Twente (February 2009)   % Make all x,y indices [x,y]=ndgrid(0:size(Iin,1)-1,0:size(Iin,2)-1);

% Calculate the Transformed coordinates Tlocalx = x+Tx; Tlocaly = y+Ty;

% All the neighborh pixels involved in linear interpolation. xBas0=floor(Tlocalx);
yBas0=floor(Tlocaly); xBas1=xBas0+1;           yBas1=yBas0+1;

% Linear interpolation constants (percentages) xCom=Tlocalx-xBas0;
yCom=Tlocaly-yBas0; perc0=(1-xCom).*(1-yCom); perc1=(1-xCom).*yCom; perc2=xCom.*(1-yCom); perc3=xCom.*yCom;

% limit indexes to boundaries check_xBas0=(xBas0<0)|(xBas0>(size(Iin,1)-1)); check_yBas0=(yBas0<0)|(yBas0>(size(Iin,2)-1)); xBas0(check_xBas0)=0;
yBas0(check_yBas0)=0;
check_xBas1=(xBas1<0)|(xBas1>(size(Iin,1)-1)); check_yBas1=(yBas1<0)|(yBas1>(size(Iin,2)-1)); xBas1(check_xBas1)=0;
yBas1(check_yBas1)=0;

Iout=zeros(size(Iin)); for i=1:size(Iin,3);        Iin_one=Iin(:,:,i);     % Get the intensities     intensity_xyz0=Iin_one(1+xBas0+yBas0*size(Iin,1));     intensity_xyz1=Iin_one(1+xBas0+yBas1*size(Iin,1));     intensity_xyz2=Iin_one(1+xBas1+yBas0*size(Iin,1));     intensity_xyz3=Iin_one(1+xBas1+yBas1*size(Iin,1));     % Make pixels before outside Ibuffer mode     if(mode==1||mode==3)         intensity_xyz0(check_xBas0|check_yBas0)=0;         intensity_xyz1(check_xBas0|check_yBas1)=0;         intensity_xyz2(check_xBas1|check_yBas0)=0;         intensity_xyz3(check_xBas1|check_yBas1)=0;     end     Iout_one=intensity_xyz0.*perc0+intensity_xyz1.*perc1+intensity_xyz2.*perc2+intensity_xyz3.*perc3;     Iout(:,:,i)=reshape(Iout_one, [size(Iin,1) size(Iin,2)]); end

非刚性图像配准 matlab简单示例 demons算法的更多相关文章

  1. QT创建模态对话框阻塞整个应用程序和非模态对话框唯一性约束的简单示例

    QT创建模态对话框阻塞整个应用程序和非模态对话框唯一性约束的简单示例 部分代码: // 创建模态对话框阻塞整个应用程序和非模态对话框唯一性约束 QMenu *pDialog = mBar->ad ...

  2. 【计算机视觉】图像配准(Image Registration)

    (Source:https://blog.sicara.com/image-registration-sift-deep-learning-3c794d794b7a)  图像配准方法概述 图像配准广泛 ...

  3. 图像配准:从SIFT到深度学习

      图像配准(Image Registration)是计算机视觉中的基本步骤.在本文中,我们首先介绍基于OpenCV的方法,然后介绍深度学习的方法. 什么是图像配准 图像配准就是找到一幅图像像素到另一 ...

  4. CV 两幅图像配准

    http://www.cnblogs.com/Lemon-Li/p/3504717.html 图像配准算法一般可分为: 一.基于图像灰度统计特性配准算法:二.基于图像特征配准算法:三.基于图像理解的配 ...

  5. PCA检测人脸的简单示例_matlab实现

    PCA检测人脸的简单示例,matlab R2009b上实现训练:训练用的20副人脸: %训练%Lx=X'*Xclear;clc;train_path='..\Data\TrainingSet\';ph ...

  6. 【图像配准】基于互信息的图像配准算法:MI、EMI、ECC算法

    简单介绍: 基于互信息的图像配准算法以其较高的配准精度和广泛的适用性而成为图像配准领域研究的热点之中的一个.而基于互信息的医学图像配准方法被觉得是最好的配准方法之中的一个.基于此.本文将介绍简单的基于 ...

  7. 【Canvas】(1)---概述+简单示例

    Canvas---概述+简单示例 如果通俗的去理解Canvas,我们可以去理解成它类似于我们电脑自带的画图工具一样,canvas首先是选择一块画布,然后在这个画布上描绘我们想画的东西,画好后展示给用户 ...

  8. 【图像配准】基于灰度的模板匹配算法(一):MAD、SAD、SSD、MSD、NCC、SSDA、SATD算法

    简介: 本文主要介绍几种基于灰度的图像匹配算法:平均绝对差算法(MAD).绝对误差和算法(SAD).误差平方和算法(SSD).平均误差平方和算法(MSD).归一化积相关算法(NCC).序贯相似性检测算 ...

  9. Opencv探索之路(二十):制作一个简易手动图像配准工具

    近日在做基于sift特征点的图像配准时遇到匹配失败的情况,失败的原因在于两幅图像分辨率相差有点大,而且这两幅图是不同时间段的同一场景的图片,所以基于sift点的匹配已经找不到匹配点了.然后老师叫我尝试 ...

随机推荐

  1. hex(x) 将整数x转换为16进制字符串

    >>> a = 122 >>> b = 344 >>> c = hex(a) >>> d = hex(b) >>&g ...

  2. 分别取商和余数:divmod(a, b)

    使用函数:divmod(a, b)可以实现分别取商和余数的操作: >>> divmod(123,3) (41, 0) >>> divmod(200,6) (33, ...

  3. Linux(CentOS)常用命令

    http://fedoranews.org/alex/tutorial/rpm/3.shtml rpm.org rpm -qa|grep mysql 查询已安装的含有mysql的包. mv 移动文件. ...

  4. Twisted 阐述

    原地址:http://bbs.gameres.com/thread_224020.html Firefly为什么使用Twisted?1.基于PythonTwisted是使用Python编写的,强壮的. ...

  5. POJ2302

    简单题. #include<stdio.h> #include<string.h> #include<stdlib.h> #include<algorithm ...

  6. 查看jdk的位数

    public class Test { public static void main(String[] args) { System.out.println("bit of JVM is ...

  7. 简单讨论数据类型(byte)强制转化后的数值变化规律

    package com.wangzhu.datatype; /** * Java基本数据类型练习 * * @ClassName: DataTypes * @Description: TODO * @a ...

  8. 中文乱码的分析 和 从Eclipse设置启动JVM时的字符集(转)

    最近时常碰到中文乱码的问题,eclipse的编码环境设置的都是UTF-8,外部也是以UTF-8的编码进行传参的,但是遇到中文的时候还是因为乱码而产生一系列的错误.在网上查了许多资料,发现这是跟JVM的 ...

  9. HTML颜色编码

    Web安全色 #000000 #000033 #000066 #000099 #0000CC #0000FF #003300 #003333 #003366 #003399 #0033CC #0033 ...

  10. Cannot proxy target class because CGLIB2 is not available. Add CGLIB to the class path or specify proxy interfaces

    问题解决:缺少jar包 cglib-2.1.3.jar