The Primo ScholarRank Technology: Bringing the Most Relevant Results to the Top of the List
By Tamar Sadeh, Director of Marketing
In today’s world, users’ expectations for a quick and easy search process, combined with an information landscape as large and complex as that covered by the Primo Central Index, render sophisticated relevance-ranking algorithms crucial to the success of the discovery process. In addition to the traditional assessment of the degree to which a retrieved item matches a user’s query, relevance-ranking algorithms need to take into account factors that relate to the academic significance of the retrieved item and to the context of the query: who submitted the query and what information need led the user to submit that query.
In March 2011, Ex Libris initiated a relevance-ranking project to enrich and optimize the original Primo® relevance-ranking algorithms. The algorithms that have thus far resulted from this project constitute the Ex Libris ScholarRank™ technology.
The project team includes members of the Ex Libris research and development staff and information-retrieval specialists. In addition, input from researchers who are located all over the world and work in various disciplines has helped the team establish metrics for the evaluation of the improvements that are made to the algorithms. In-depth information about the relevance-ranking project is available in a white paper, which you can obtain from your account manager.
What Is Primo ScholarRank?
Although relevance-ranking algorithms are not new in the context of information retrieval (IR) systems, the Ex Libris R&D team realized early on in the development of the Primo discovery and delivery solution that for optimal application to scholarly data, traditional IR algorithms would have to be adjusted and enhanced considerably. The current Primo relevance-ranking project is equipping the algorithms with new capabilities, which take into account a user’s background and information needs as well as the global scholarly significance of materials. The latter aspect is expressed as a measure of various factors, such as the number of citations that a publication has generated and usage information that reflects scholars’ interest in the publication. Along with these enhancements, the project team is adding a self-learning mechanism that feeds data back to the algorithms and helps the system constantly improve the order of search results over time. Together, all these features constitute the ScholarRank relevance-ranking technology; some of the features are already deployed by the Primo solution, and others will be implemented in 2012.
To determine the position of an item on a result list, ScholarRank is designed to take into account the following three elements:
- The degree to which the item matches the query
- A score representing the item’s scholarly value (referred to as the ScholarRank value score)
- Information about the user and the user’s research need at the specific point in time
The match between a query and an item is calculated according to IR methods that have been adapted to the structure of the specific type of information (metadata, abstract, or full text). Not only do the proximity and order of the query terms in a result record have an impact on the ranking, but the field in which the query terms appear also has an effect; for example, if the terms appear in an item’s title, the item is likely to be more relevant to the user than an item for which the query words appear only in the full text. Furthermore, specific types of materials are typically more likely to satisfy user needs; for example, when all else is equal, a journal article is ranked higher than a newspaper article and a recent publication is ranked higher than an older one.
The ScholarRank value score represents an evaluation of an item’s academic significance regardless of the degree to which the item matches the query. To calculate the value score, the Primo ScholarRank technology relies on usage metrics derived from the bX article recommender database and other data, such as the item’s citation information.
The Primo ScholarRank technology also considers certain characteristics of a user to provide personalized ranking. Applying information about the user’s area of research, ScholarRank boosts materials related to the user’s discipline when the topic that is inferred from the query is ambiguous. Information about the user’s academic degree enables ScholarRank to boost materials that would be considered appropriate for that level; for instance, for a query submitted by a researcher who holds a Ph.D., in‑depth items would be among the highest ranked.
Finally, a user’s specific information need (a particular item or materials on a particular subject) is factored into the relevance-ranking equation. By analyzing a query, the Primo ScholarRank technology “infers” the user’s need and adapts to the type of search (a known-item search, narrow-topic search, broad-topic search, or author-related search). For example, in a broad-topic search, reference materials or review articles are likely to be more relevant to the user than an article dealing with a specific aspect of the subject matter.
Looking Ahead
Awareness of the huge impact of relevance ranking on the success of the discovery process has brought the ScholarRank technology to the forefront of research at Ex Libris.
The goal of the work invested in the Primo relevance-ranking algorithms is to enable academic users to find the exact scholarly materials that they need—and find them quickly. By shortening users’ discovery time, Primo improves their productivity, draws more traffic to the library site, and helps achieve optimal use of library collections. As a result, Primo enables libraries to better serve their community and their institution’s mission and to gain the prominence that they deserve in the provision of scholarly information.
The research and development work on the ScholarRank technology is an ongoing effort and will continue to introduce enhancements. Additional methods of personalizing relevance ranking will be added to the algorithms, as well as more features drawn from relationships between researchers, authors, and scholarly materials.
The Primo ScholarRank Technology: Bringing the Most Relevant Results to the Top of the List的更多相关文章
- 斯坦福CS课程列表
http://exploredegrees.stanford.edu/coursedescriptions/cs/ CS 101. Introduction to Computing Principl ...
- Information retrieval信息检索
https://en.wikipedia.org/wiki/Information_retrieval 信息检索 (一种信息技术) 信息检索(Information Retrieval)是指信息按一定 ...
- 微软职位内部推荐-Sr DEV Lead, Bing Search Relevance
微软近期Open的职位: Contact Person: Winnie Wei (wiwe@microsoft.com )Sr DEV Lead, Bing Search RelevanceLocat ...
- 美国政府关于Google公司2013年度的财务报表红头文件
请管理员移至新闻版块,谢谢! 来源:http://www.sec.gov/ 财务报表下载↓ 此文仅作参考分析. 10-K 1 goog2013123110-k.htm FORM 10-K UNIT ...
- cassandra + lucene集成
Stratio’s Cassandra Lucene Index Stratio’s Cassandra Lucene Index, derived from Stratio Cassandra, i ...
- 翻译 | Placing Search in Context The Concept Revisited
翻译 | Placing Search in Context The Concept Revisited 原文 摘要 [1] Keyword-based search engines are in w ...
- (转)Awesome Courses
Awesome Courses Introduction There is a lot of hidden treasure lying within university pages scatte ...
- 每日英语:Tech Firms Flock to Vietnam
Opening up a Korean restaurant among the rice fields and limestone karsts north of Hanoi might seem ...
- cassandra的全文检索插件
https://github.com/Stratio/cassandra-lucene-index Stratio’s Cassandra Lucene Index Stratio’s Cassand ...
随机推荐
- IC芯片設計
IC從生產目的上可以分成為通用IC(如CPU,DRAM,接口芯片等)和ASIC(ApplicationSpecificIntegreted Circuit)兩種,ASIC是因應專門用途而生產的IC. ...
- 用于 Visual Studio 和 ASP.NET 的 Web 应用程序项目部署常见问题
https://msdn.microsoft.com/zh-cn/library/ee942158(v=vs.110).aspx#can_i_exclude_specific_files_or_fol ...
- oracle索引总结
简介 1.说明 1)索引是数据库对象之一,用于加快数据的检索,类似于书籍的索引.在数据库中索引可以减少数据库程序查询结果时需要读取的数据量,类似于在书籍中我们利用索引可以不用翻阅整本书即可找到想要的信 ...
- 本地存储-webStorage
webStorage 提供了一种方式让网站能够把信息存储到你本地的计算机上,并在以后需要的时候进行获取.这个概念和cookie相似,区别是它是为了更大容量存储设计的.Cookie的大小是受限的,并且每 ...
- 【转】silverlight 跨域访问
作者:MIDI 来源:博客园 发布时间:2010-01-01 17:39 阅读:204 次 原文链接 [收藏] 在 Silverlight 使用 WebService .WCF.We ...
- vimrc 配置支持backspace
在vimrc中添加: set nocompatible set backspace=indent,eol,start
- libvirt API管理hypervisors
发布一段C代码,用于连接指定的KVM宿主机器,获得该宿主机器的配置信息,以及该主机上所有的虚拟主机列表.状态及配置信息: #include <stdio.h>#include <st ...
- JavaScript之原型深入详解
理解原型 原型是一个对象,其他对象可以通过它实现属性继承.任何一个对象都可以成为继承,所有对象在默认的情况下都有一个原型,因为原型本身也是对象,所以每个原型自身又有一个原型.任何一个对象都有一个pro ...
- MVC路由机制
按照传统,在很多Web框架中(如经典的ASP.JSP.PHP.ASP.NET等之类的框架),URL代表的是磁盘上的物理文件.例如,当看到请求http://example.com/albums/li ...
- Byte[]、Image、Bitmap_之间的相互转换
1.将图片Image转换成Byte[] /// <summary> /// 将图片Image转换成Byte[] /// </summary> ...