yolov3在目标检测领域可以算得上是state-of-art级别的了,在实时性和准确性上都有很好的保证.yolo也不是一开始就达到了这么好的效果,本身也是经历了不断地演进的.

yolov1

测试图片

yolov1有个基本的思想,就是将图片划分为S*S个小格grid,每个grid负责一个目标.上图里的黄色框就是grid.蓝色框就是预测的object.蓝色点是object的中心,位于黄色框内.

每个grid只预测一个目标,这个就造成了yolo的一个缺陷,当多个目标的中心都落在同一个grid cell里的时候,却只能预测出来一个.比如上图左下角有9个圣诞老人,但是只预测出来5个.

反映到模型上,也就是说输入一个448*448*3图片,经过不断卷积,输出一个7*7*30的tensor. 这里的7*7就对应于上面说到的S*S.

那么这里的30怎么来的呢? 每一个grid cell预测2个框出来,每个框对应5个值,(x,y,w,h)和一个box confidence score.box confidence score反映了预测出来的box含有目标的可能性以及这个预测的box的准确性. yolov1预测出20个类别的概率. 所以30 = 2*5 + 20
我们用B指代每个cell预测出B个box,C指代每个cell预测出C个类别的概率.那么yolo的输出的tensor的shape则为(S,S,Bx5+C)

这就是yolo的核心思想了,构建一个CNN网络,得到一个(7,7,30)的tensor.

这样的话就得到了7*7*2个box,我们只保留box confidence score>某个值的box作为我们最终的预测box.

loss

损失函数分为3个部分

  • box位置错误
  • confidence错误(box确实包含目标的可能性错误)
  • 类别概率错误
    其实也就是衡量我们的这些预测值(x,y,w,h,confidence,classp1,classp2....)和真实值的差异

首先,我们预测出了B个box,我们只会用其中一个去计算loss.我们选取与ground-truth box的IOU最大的作为我们计算loss的box.ground-truth box怎么来,因为我们事先已经把数据标注好了,我们当然可以找到ground-truth box的中心位于某个grid cell内,如果有多个ground-truth box的中心都位于当前grid cell内,怎么办?计算每一个predict box和每一个ground-truth box的IOU,选取iou最大的作为相应的predict box,ground-truth box.这个方式带来的一个问题就是前面圣诞老人那个图说到的,当多个目标很密集,他们的中心都落在了同一个grid cell内的时候,yolov1只能检测出其中之一.

loss函数如下图所示:

loss函数的设计基于以下几种考虑

  1. 每一种loss都给相同的权重是不合适的,对于box位置错误给更多的权重,

    目标检测YOLO进化史之yolov1的更多相关文章

    1. 小白也能弄得懂的目标检测YOLO系列之YOLOv1网络训练

      上期给大家介绍了YOLO模型的检测系统和具体实现,YOLO是如何进行目标定位和目标分类的,这期主要给大家介绍YOLO是如何进行网络训练的,话不多说,马上开始! 前言: 输入图片首先被分成S*S个网格c ...

    2. 小白也能弄懂的目标检测YOLO系列之YOLOV1 - 第二期

      上期给大家展示了用VisDrone数据集训练pytorch版YOLOV3模型的效果,介绍了什么是目标检测.目标检测目前比较流行的检测算法和效果比较以及YOLO的进化史,这期我们来讲解YOLO最原始V1 ...

    3. [目标检测]YOLO原理

      1 YOLO 创新点: 端到端训练及推断 + 改革区域建议框式目标检测框架 + 实时目标检测 1.1 创新点 (1) 改革了区域建议框式检测框架: RCNN系列均需要生成建议框,在建议框上进行分类与回 ...

    4. 目标检测(五)YOLOv1—You Only Look Once:Unified,Real-Time Object Detection

      之前的目标检测算法大都采用proposals+classifier的做法(proposal提供位置信息,分类器提供类别信息),虽然精度很高,但是速度比较慢,也可能无法进行end-to-end训练.而该 ...

    5. 第四节,目标检测---YOLO系列

      1.R-CNN回顾 适应全卷积化CNN结构,提出全卷积化设计 共享ResNet的所有卷积层 引入变换敏感性(Translation variance) 位置敏感分值图(Position-sensiti ...

    6. 目标检测-yolo

      论文下载:http://arxiv.org/abs/1506.02640 代码下载:https://github.com/pjreddie/darknet 1.创新点 端到端训练及推断 + 改革区域建 ...

    7. 目标检测YOLO算法-学习笔记

      算法发展及对比: 17年底,mask-R CNN YOLO YOLO最大的优势就是快 原论文中流程,可以检测出20类物体. 红色网格-张量,在这样一个1×30的张量中保存的数据 横纵坐标中心点缩放到0 ...

    8. 【目标检测】YOLO:

      PPT 可以说是讲得相当之清楚了... deepsystems.io 中文翻译: https://zhuanlan.zhihu.com/p/24916786 图解YOLO YOLO核心思想:从R-CN ...

    9. 第三十五节,目标检测之YOLO算法详解

      Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object de ...

    随机推荐

    1. python爬虫笔记之re.compile.findall()

      re.compile.findall原理是理解了,但输出不大理解(主要是加了正则表达式的括号分组) 一开始不懂括号的分组及捕捉,看了网上这个例子(如下),然而好像还是说不清楚这个括号的规律(还是说我没 ...

    2. 微信小程序 setData 数组 渲染问题 删除之后的数组渲染不正确

      list: [ { id: , mode: , src: ' }, { id: , mode: , src: ' }, { id: , mode: , src: ' } ], onDelete(e) ...

    3. 「数据分析」Sqlserver中的窗口函数的精彩应用-问题篇

      最近看到PowerBI圈子在讨论最大连续区间段的问题,即某人最大的全勤时间,某人的最长的连续打卡时间等问题的计算,佐罗老师给出了10万倍性能的答案.这个问题也引发了笔者一些兴趣,隐约记得以前看过Sql ...

    4. Git远程版本库

      目前为止,所有的Git操作都是在一个本地版本库中.现在是时候来体验Git分布式的特性了. 说到远程版本库,大家最为熟悉的就是GitHub了,它实际上就相当于一个远程版本库,托管着所有的本地版本库的提交 ...

    5. 一个测试文件与源文件位于不同模块时Jacoco覆盖率配置的例子

      问题描述: 我们有个多模块项目,由于种种原因(更常见的可能是需要集成测试)测试文件和源文件不在一个模块,Jacoco的覆盖率无法正确显示,查询了一些资料,发现中文的例子比较少,就把我自己的Demo贴一 ...

    6. [leetcode ]429. N-ary Tree Level Order Traversale (easy)

      原题 思路: bfs,每一层遍历一次加到一个vector,同时把该点的子元素加到queue中. class Solution { public: vector<vector<int> ...

    7. 解密Kafka吞吐量高的原因

      众所周知kafka的吞吐量比一般的消息队列要高,号称the fastest,那他是如何做到的,让我们从以下几个方面分析一下原因. 生产者(写入数据) 生产者(producer)是负责向Kafka提交数 ...

    8. C# Socket服务器端如何判断客户端断开求解

      Socket client //假如已经创建好了,连接到服务器端得Socket的客户端对象. 我们只要client.Poll(10,SelectMode.SelectRead)判断就行了.只要返回Tr ...

    9. JDK(Linux)

      百度云:链接:http://pan.baidu.com/s/1gfa9sEB    密码:bpqr 官网下载网址:http://www.oracle.com/technetwork/java/java ...

    10. php上传excle文件,csv文件解析为二维数组

      解析上传的CSV文件不是什么难事,直接读取转成你想要的数组样子就OK了. public function putStoreStockIn ($filePath = '') { $file = fope ...