树表示由边连接的节点。它是一个非线性的数据结构。它具有以下特性。

  1. 一个节点被标记为根节点。
  2. 除根节点之外的每个节点都与一个父节点关联。
  3. 每个节点可以有一个arbiatry编号的chid节点。

我们使用前面讨论的os节点概念在python中创建了一个树数据结构。我们将一个节点指定为根节点,然后将更多的节点添加为子节点。下面是创建根节点的程序。

创建树

创建根

我们只需要创建一个节点类并向节点添加赋值。这就变成了只有根节点的树。

 class Node:

     def __init__(self, data):
self.left = None #左节点
self.right = None #右节点
self.data = data #值 def PrintTree(self):
print(self.data) root = Node(10) #创建节点 root.PrintTree()

当执行上述代码时,将产生以下结果-

10

插入到树中

要插入到树中,我们使用上面创建的相同节点类,并向其添加一个插入类。insert类将节点的值与父节点的值进行比较,并决定将其添加为左节点或右节点。最后,PrintTree类用于打印树。

 class Node:
def __init__(self, data):
self.left = None
self.right = None
self.data = data def insert(self, data):
# 将新值与父节点进行比较
if self.data: # 非空
if data < self.data: #新值较小,放左边
if self.left is None: #若空,则新建插入节点
self.left = Node(data)
else: #否则,递归往下查找
self.left.insert(data)
elif data > self.data: #新值较大,放右边
if self.right is None: #若空,则新建插入节点
self.right = Node(data)
else: #否则,递归往下查找
self.right.insert(data)
else:
self.data = data # 打印这棵树,中序遍历
def PrintTree(self):
if self.left:
self.left.PrintTree()
print( self.data),
if self.right:
self.right.PrintTree() # 使用insert方法添加节点
root = Node(12)
root.insert(6)
root.insert(14)
root.insert(3) root.PrintTree()

当执行上述代码时,将产生以下结果-

3 6 12 14

遍历树

可以通过决定访问每个节点的序列来遍历树。我们可以清楚地看到,我们可以从一个节点开始,然后首先访问左子树,然后访问右子树。或者我们也可以先访问右子树然后访问左子树。因此,这些树遍历方法有不同的名称。我们将在实现树遍历算法的章节中详细研究它们。

Python树遍历算法

遍历是一个访问树的所有节点的过程,也可以打印它们的值。因为,所有节点都是通过边(链接)连接的,所以我们总是从根(头)节点开始。也就是说,我们不能随机访问树中的节点。我们走过一棵树有三种方法

  1. 先序遍历
  2. 中序遍历
  3. 后序遍历

顺序遍历

在这个遍历方法中,首先访问左子树,然后访问根,然后访问右子树。我们应该始终记住,每个节点都可以表示子树本身。
在下面的python程序中,我们使用Node类为根节点以及左右节点创建位置占位符。然后我们创建一个insert函数来向树中添加数据。最后,通过创建一个空列表并首先添加左节点,然后添加根节点或父节点来实现order遍历逻辑。最后添加左节点来完成order遍历。

 class Node:

     def __init__(self, data):

         self.left = None
self.right = None
self.data = data
# Insert Node
def insert(self, data): if self.data:
if data < self.data:
if self.left is None:
self.left = Node(data)
else:
self.left.insert(data)
elif data > self.data:
if self.right is None:
self.right = Node(data)
else:
self.right.insert(data)
else:
self.data = data # Print the Tree
def PrintTree(self):
if self.left:
self.left.PrintTree()
print( self.data),
if self.right:
self.right.PrintTree() # 中序遍历
# Left -> Root -> Right
def inorderTraversal(self, root):
res = []
if root:
res = self.inorderTraversal(root.left)
res.append(root.data)
res = res + self.inorderTraversal(root.right)
return res root = Node(27)
root.insert(14)
root.insert(35)
root.insert(10)
root.insert(19)
root.insert(31)
root.insert(42)
print(root.inorderTraversal(root))

当执行上述代码时,将产生以下结果-

[10、14、19、27、31、35、42]

预购遍历

在这种遍历方法中,首先访问根节点,然后访问左子树,最后访问右子树。
在下面的python程序中,我们使用Node类为根节点以及左右节点创建位置占位符。然后我们创建一个insert函数来向树中添加数据。最后,通过创建一个空列表并首先添加根节点,然后添加左节点来实现预排序遍历逻辑。最后添加正确的节点来完成预定遍历。请注意,此过程对每个子树重复,直到所有t

 class Node:

     def __init__(self, data):

         self.left = None
self.right = None
self.data = data
# Insert Node
def insert(self, data): if self.data:
if data < self.data:
if self.left is None:
self.left = Node(data)
else:
self.left.insert(data)
elif data > self.data:
if self.right is None:
self.right = Node(data)
else:
self.right.insert(data)
else:
self.data = data # Print the Tree
def PrintTree(self):
if self.left:
self.left.PrintTree()
print( self.data),
if self.right:
self.right.PrintTree() # 先序遍历
# Root -> Left ->Right
def PreorderTraversal(self, root):
res = []
if root:
res.append(root.data)
res = res + self.PreorderTraversal(root.left)
res = res + self.PreorderTraversal(root.right)
return res root = Node(27)
root.insert(14)
root.insert(35)
root.insert(10)
root.insert(19)
root.insert(31)
root.insert(42)
print(root.PreorderTraversal(root))

当执行上述代码时,将产生以下结果-

[27, 14, 10, 19, 35, 31, 42]

后序遍历

在这个遍历方法中,根节点最后访问,因此得名。首先遍历左子树,然后遍历右子树,最后遍历根节点。

在下面的python程序中,我们使用Node类为根节点以及左右节点创建位置占位符。然后我们创建一个insert函数来向树中添加数据。最后,通过创建一个空列表并先添加左节点后添加右节点来实现后序遍历逻辑。最后添加根节点或父节点来完成后序遍历。请注意,此过程将对每个子树重复,直到遍历所有节点。

 class Node:

     def __init__(self, data):

         self.left = None
self.right = None
self.data = data
# Insert Node
def insert(self, data): if self.data:
if data < self.data:
if self.left is None:
self.left = Node(data)
else:
self.left.insert(data)
elif data > self.data:
if self.right is None:
self.right = Node(data)
else:
self.right.insert(data)
else:
self.data = data # Print the Tree
def PrintTree(self):
if self.left:
self.left.PrintTree()
print( self.data),
if self.right:
self.right.PrintTree() # 后序遍历
# Left ->Right -> Root
def PostorderTraversal(self, root):
res = []
if root:
res = self.PostorderTraversal(root.left)
res = res + self.PostorderTraversal(root.right)
res.append(root.data)
return res root = Node(27)
root.insert(14)
root.insert(35)
root.insert(10)
root.insert(19)
root.insert(31)
root.insert(42)
print(root.PostorderTraversal(root))

当执行上述代码时,将产生以下结果-

[10、19、14、31、42、35、27]

Python -二叉树 创建与遍历算法(很详细)的更多相关文章

  1. leadcode的Hot100系列--二叉树创建和遍历

    很多题目涉及到二叉树,所以先把二叉树的一些基本的创建和遍历写一下,方便之后的本地代码调试. 为了方便,这里使用的数据为char类型数值,初始化数据使用一个数组. 因为这些东西比较简单,这里就不做过多详 ...

  2. 二叉树 ADT接口 遍历算法 常规运算

    BTree.h   (结构定义, 基本操作, 遍历) #define MS 10 typedef struct BTreeNode{ char data; struct BTreeNode * lef ...

  3. Go语言二叉树定义及遍历算法实现

    // binary_tree 二叉树 package Algorithm import ( "reflect" ) // 二叉树定义 type BinaryTree struct ...

  4. python二叉树的深度遍历之先序遍历流程图

  5. [LintCode] Binary Tree Level Order Traversal(二叉树的层次遍历)

    描述 给出一棵二叉树,返回其节点值的层次遍历(逐层从左往右访问) 样例 给一棵二叉树 {3,9,20,#,#,15,7} : 3 / \ 9 20 / \ 15 7 返回他的分层遍历结果: [ [3] ...

  6. 【算法编程 C++ Python】根据前序遍历、中序遍历重建二叉树

    题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7, ...

  7. python聚类算法实战详细笔记 (python3.6+(win10、Linux))

    python聚类算法实战详细笔记 (python3.6+(win10.Linux)) 一.基本概念:     1.计算TF-DIF TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库 ...

  8. 算法:二叉树的层次遍历(递归实现+非递归实现,lua)

    二叉树知识参考:深入学习二叉树(一) 二叉树基础 递归实现层次遍历算法参考:[面经]用递归方法对二叉树进行层次遍历 && 二叉树深度 上面第一篇基础写得不错,不了解二叉树的值得一看. ...

  9. python二叉树递归算法之后序遍历,前序遍历,中序遍历

    #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2016-11-18 08:53:45 # @Author : why_not_try ...

随机推荐

  1. [leetcode] 238. Product of Array Except Self (medium)

    原题 思路: 注意时间复杂度,分别乘积左右两边,可达到O(n) class Solution { public: vector<int> productExceptSelf(vector& ...

  2. [系列] Gin框架 - 数据绑定和验证

    目录 概述 推荐阅读 概述 上篇文章分享了 Gin 框架使用 Logrus 进行日志记录,这篇文章分享 Gin 框架的数据绑定与验证. 有读者咨询我一个问题,如何让框架的运行日志不输出控制台? 解决方 ...

  3. python购物车升级版

    各文件内容 前言 功能架构等请参考前一篇博客,此篇博客为进阶版的存代码展示. 详细文件内容 启动文件 starts.py启动文件 import os import sys BASE_DIR = os. ...

  4. linux初学者-firewall篇

     linux初学者-firewall篇 firewalld是防火墙的另一种程序,与iptables相同,但是使用起来要比iptables简单的点,不需要了解3张表和5条链也可以使用. 1.firewa ...

  5. difflib python

    difflib -帮助进行差异化比较 这个模块提供的类和方法用来进行差异化比较,它能够生成文本或者html格式的差异化比较结果,如果需要比较目录的不同,可以使用filecmp模块. 例子: # -*- ...

  6. 2048 控制台版(C#)

    开篇 2048游戏现在很火啊,很多人应该已经玩过了.在博客园上也看见有人模仿做的GDI+版 2048游戏,鄙人暂且不做那么多动画的东西,毕竟是个小东东,在此奉上一个<控制台版2048>. ...

  7. web设计_2_灵活的文字

    最佳设计:可以让用户自由控制任何页面的文字大小. 浏览器中用户都是可以自定义默认的文字大小的,如果使用 px,用户自行在浏览器设置中改变了文字大小后,网页上是不会变化的.我们不能排除视障用户(如近视) ...

  8. rabbitMQ_Publish/Subscribe(三)

    发布/订阅 生产者发布信息,多个订阅者可以同时接收到信息. 转发器 现在是时候在RabbitMQ中引入完整的消息传递模式了. 让我们快速了解我们在以前的教程中介绍的内容: 生产者是一个发送消息的应用程 ...

  9. c&c服务器(command and control server)

    远程命令和控制服务器,目标机器可以接收来自服务器的命令,从而达到服务器控制目标机器的目的.该方法常用于病毒木马控制被感染的机器.

  10. 入门webpack,看这篇就够了

    什么是webpack? 官网给出的概念是:本质上,webpack 是一个现代 JavaScript 应用程序的静态模块打包器(module bundler).当 webpack 处理应用程序时,它会递 ...