【Python】机器学习之单变量线性回归练习(计算Cost Function)
注:练习来自于吴恩达机器学习
翻译后的题目:
你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方),数据中包括不同的城市人口数和该城市带来的利润。第一列是城市的人口数,第二列是在这个城市开店所带来的利润数。
现在,假设θ0和θ1都是0,计算CostFunction,即计算损失函数
首先,本题线性回归的公式应该是这样的:
H(θ) = θ0 + θ1*X
简单的来说,本题中,θ0和θ1都为0,即求H(θ) = 0的损失值,
然后我们再给出损失的定义:
损失,通俗的来讲,即你预测值和给定值的差
这样就得出了损失函数J(θ)的定义:
m为数据的总条数,即m代表有几条数据。
第一步,导包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
第二步,把数据读入,然后把图打出来看一下:
path = 'ex1data1.txt'
data = pd.read_csv(path, header=None, names=['Population', 'Profit'])
data.plot(kind='scatter', x='Population', y='Profit', figsize=(12, 8))
plt.show()
图:

第三步,定义一下costFunction
def computeCost(X, y, theta):
inner = np.power(((X * theta.T) - y), 2)
return np.sum(inner) / (2 * len(X))
第四步,然后把X从data分出来,Y从data分出来,在X的左边再加一列1,
分出来后的结果为,X为97行2列,Y为97行1列,θ为1行2列,
costFunction是计算矩阵X*矩阵θ的转置得到的值来和真实的Y值比较,计算Cost
data.insert(0, 'Ones', 1)
rows = data.shape[0]
cols = data.shape[1]
X = data.iloc[:, 0:cols - 1]
Y = data.iloc[:, cols - 1:cols]
theta = np.mat('0,0')
X = np.mat(X.values)
Y = np.mat(Y.values) cost = computeCost(X, Y, theta)
print(cost)
标准答案:
32.072733877455676
附数据集ex1data1.txt
6.1101,17.592
5.5277,9.1302
8.5186,13.662
7.0032,11.854
5.8598,6.8233
8.3829,11.886
7.4764,4.3483
8.5781,12
6.4862,6.5987
5.0546,3.8166
5.7107,3.2522
14.164,15.505
5.734,3.1551
8.4084,7.2258
5.6407,0.71618
5.3794,3.5129
6.3654,5.3048
5.1301,0.56077
6.4296,3.6518
7.0708,5.3893
6.1891,3.1386
20.27,21.767
5.4901,4.263
6.3261,5.1875
5.5649,3.0825
18.945,22.638
12.828,13.501
10.957,7.0467
13.176,14.692
22.203,24.147
5.2524,-1.22
6.5894,5.9966
9.2482,12.134
5.8918,1.8495
8.2111,6.5426
7.9334,4.5623
8.0959,4.1164
5.6063,3.3928
12.836,10.117
6.3534,5.4974
5.4069,0.55657
6.8825,3.9115
11.708,5.3854
5.7737,2.4406
7.8247,6.7318
7.0931,1.0463
5.0702,5.1337
5.8014,1.844
11.7,8.0043
5.5416,1.0179
7.5402,6.7504
5.3077,1.8396
7.4239,4.2885
7.6031,4.9981
6.3328,1.4233
6.3589,-1.4211
6.2742,2.4756
5.6397,4.6042
9.3102,3.9624
9.4536,5.4141
8.8254,5.1694
5.1793,-0.74279
21.279,17.929
14.908,12.054
18.959,17.054
7.2182,4.8852
8.2951,5.7442
10.236,7.7754
5.4994,1.0173
20.341,20.992
10.136,6.6799
7.3345,4.0259
6.0062,1.2784
7.2259,3.3411
5.0269,-2.6807
6.5479,0.29678
7.5386,3.8845
5.0365,5.7014
10.274,6.7526
5.1077,2.0576
5.7292,0.47953
5.1884,0.20421
6.3557,0.67861
9.7687,7.5435
6.5159,5.3436
8.5172,4.2415
9.1802,6.7981
6.002,0.92695
5.5204,0.152
5.0594,2.8214
5.7077,1.8451
7.6366,4.2959
5.8707,7.2029
5.3054,1.9869
8.2934,0.14454
13.394,9.0551
5.4369,0.61705
ex1data1.txt
【Python】机器学习之单变量线性回归练习(计算Cost Function)的更多相关文章
- 【Python】机器学习之单变量线性回归 利用批量梯度下降找到合适的参数值
[Python]机器学习之单变量线性回归 利用批量梯度下降找到合适的参数值 本题目来自吴恩达机器学习视频. 题目: 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方), ...
- 【Python】机器学习之单变量线性回归 利用正规方程找到合适的参数值
[Python]机器学习之单变量线性回归 利用正规方程找到合适的参数值 本次作业来自吴恩达机器学习. 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方),数据中包括不同 ...
- 机器学习之单变量线性回归(Linear Regression with One Variable)
1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住 ...
- 机器学习 (一) 单变量线性回归 Linear Regression with One Variable
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...
- 吴恩达机器学习(二) 单变量线性回归(Linear Regression with one variable)
一.模型表示 1.一些术语 如下图,房价预测.训练集给出了房屋面积和价格,下面介绍一些术语: x:输入变量或输入特征(input variable/features). y:输出变量或目标变量(out ...
- python 单变量线性回归
单变量线性回归(Linear Regression with One Variable)¶ In [54]: #初始化工作 import random import numpy as np imp ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 2_Linear regression with one variable 单变量线性回归
Lecture2 Linear regression with one variable 单变量线性回归 2.1 模型表示 Model Representation 2.1.1 线性回归 Li ...
- 机器学习(二)--------单变量线性回归(Linear Regression with One Variable)
面积与房价 训练集 (Training Set) Size Price 2104 460 852 178 ...... m代表训练集中实例的数量x代表输入变量 ...
- Coursera《machine learning》--(2)单变量线性回归(Linear Regression with One Variable)
本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation ...
随机推荐
- Unity的UGUI在SetParent后修改UI的localposition问题
正常情况下,UGUI设置UI的localposition可以直接赋值 UIxxx.rectTransform.localPosition = ] / 2f, , ); 运行后在Unity的Inspec ...
- nsq源码分析
nsq的源码比较简单,值得一读,特别是golang开发人员,下面重点介绍nsqd,看完这篇文章希望你能对消息队列的原理和实现有一定的了解. nsqd是一个守护进程,负责接收,排队,投递消息给客户端,并 ...
- Markdown写作入门
什么是Markdown格式 Markdown格式是一种可用普通文本编辑器编写的标记语言,使用者能够通过简单的标记语法,对自己所写文本内容进行简单的格式排版: 优点 语法简洁易学,且功能比纯文本强大: ...
- String类中intern方法的原理分析
一,前言 昨天简单整理了JVM内存分配和String类常用方法,遇到了String中的intern()方法.本来想一并总结起来,但是intern方法还涉及到JDK版本的问题,内容也相对较多,所以今 ...
- 怎样用QT在windows环境通过编程卸载installShield打包的程序
通常情况下,如果是一个完备的软件,我们可以通过启动软件的uninstaller.exe之类的程序来完成卸载.但是使用installShield打包的程序,本身可能并不含有这类卸载程序.此时,我们可以通 ...
- hdu-6644 11 Dimensions
题目链接 11 Dimensions Problem Description 11 Dimensions is a cute contestant being talented in math. On ...
- ACM-ICPC 2018 沈阳赛区(网络赛)
D.Made In Heaven One day in the jail, F·F invites Jolyne Kujo (JOJO in brief) to play tennis with he ...
- lightoj 1084 - Winter(dp+二分+线段树or其他数据结构)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1084 题解:不妨设dp[i] 表示考虑到第i个点时最少有几组那么 if a[i ...
- Rikka with Prefix Sum(组合数学)
Rikka with Prefix Sum 题目描述 Prefix Sum is a useful trick in data structure problems. For example, giv ...
- CodeForces 1107 - G Vasya and Maximum Profit 线段树
题目传送门 题解: 枚举 r 的位置. 线段树每个叶子节点存的是对应的位置到当前位置的价值. 每次往右边移动一个r的话,那么改变的信息有2个信息: 1. sum(a-ci) 2.gap(l, r) 对 ...
