【Python】机器学习之单变量线性回归练习(计算Cost Function)
注:练习来自于吴恩达机器学习
翻译后的题目:
你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方),数据中包括不同的城市人口数和该城市带来的利润。第一列是城市的人口数,第二列是在这个城市开店所带来的利润数。
现在,假设θ0和θ1都是0,计算CostFunction,即计算损失函数
首先,本题线性回归的公式应该是这样的:
H(θ) = θ0 + θ1*X
简单的来说,本题中,θ0和θ1都为0,即求H(θ) = 0的损失值,
然后我们再给出损失的定义:
损失,通俗的来讲,即你预测值和给定值的差
这样就得出了损失函数J(θ)的定义:
m为数据的总条数,即m代表有几条数据。
第一步,导包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
第二步,把数据读入,然后把图打出来看一下:
path = 'ex1data1.txt'
data = pd.read_csv(path, header=None, names=['Population', 'Profit'])
data.plot(kind='scatter', x='Population', y='Profit', figsize=(12, 8))
plt.show()
图:

第三步,定义一下costFunction
def computeCost(X, y, theta):
inner = np.power(((X * theta.T) - y), 2)
return np.sum(inner) / (2 * len(X))
第四步,然后把X从data分出来,Y从data分出来,在X的左边再加一列1,
分出来后的结果为,X为97行2列,Y为97行1列,θ为1行2列,
costFunction是计算矩阵X*矩阵θ的转置得到的值来和真实的Y值比较,计算Cost
data.insert(0, 'Ones', 1)
rows = data.shape[0]
cols = data.shape[1]
X = data.iloc[:, 0:cols - 1]
Y = data.iloc[:, cols - 1:cols]
theta = np.mat('0,0')
X = np.mat(X.values)
Y = np.mat(Y.values) cost = computeCost(X, Y, theta)
print(cost)
标准答案:
32.072733877455676
附数据集ex1data1.txt
6.1101,17.592
5.5277,9.1302
8.5186,13.662
7.0032,11.854
5.8598,6.8233
8.3829,11.886
7.4764,4.3483
8.5781,12
6.4862,6.5987
5.0546,3.8166
5.7107,3.2522
14.164,15.505
5.734,3.1551
8.4084,7.2258
5.6407,0.71618
5.3794,3.5129
6.3654,5.3048
5.1301,0.56077
6.4296,3.6518
7.0708,5.3893
6.1891,3.1386
20.27,21.767
5.4901,4.263
6.3261,5.1875
5.5649,3.0825
18.945,22.638
12.828,13.501
10.957,7.0467
13.176,14.692
22.203,24.147
5.2524,-1.22
6.5894,5.9966
9.2482,12.134
5.8918,1.8495
8.2111,6.5426
7.9334,4.5623
8.0959,4.1164
5.6063,3.3928
12.836,10.117
6.3534,5.4974
5.4069,0.55657
6.8825,3.9115
11.708,5.3854
5.7737,2.4406
7.8247,6.7318
7.0931,1.0463
5.0702,5.1337
5.8014,1.844
11.7,8.0043
5.5416,1.0179
7.5402,6.7504
5.3077,1.8396
7.4239,4.2885
7.6031,4.9981
6.3328,1.4233
6.3589,-1.4211
6.2742,2.4756
5.6397,4.6042
9.3102,3.9624
9.4536,5.4141
8.8254,5.1694
5.1793,-0.74279
21.279,17.929
14.908,12.054
18.959,17.054
7.2182,4.8852
8.2951,5.7442
10.236,7.7754
5.4994,1.0173
20.341,20.992
10.136,6.6799
7.3345,4.0259
6.0062,1.2784
7.2259,3.3411
5.0269,-2.6807
6.5479,0.29678
7.5386,3.8845
5.0365,5.7014
10.274,6.7526
5.1077,2.0576
5.7292,0.47953
5.1884,0.20421
6.3557,0.67861
9.7687,7.5435
6.5159,5.3436
8.5172,4.2415
9.1802,6.7981
6.002,0.92695
5.5204,0.152
5.0594,2.8214
5.7077,1.8451
7.6366,4.2959
5.8707,7.2029
5.3054,1.9869
8.2934,0.14454
13.394,9.0551
5.4369,0.61705
ex1data1.txt
【Python】机器学习之单变量线性回归练习(计算Cost Function)的更多相关文章
- 【Python】机器学习之单变量线性回归 利用批量梯度下降找到合适的参数值
[Python]机器学习之单变量线性回归 利用批量梯度下降找到合适的参数值 本题目来自吴恩达机器学习视频. 题目: 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方), ...
- 【Python】机器学习之单变量线性回归 利用正规方程找到合适的参数值
[Python]机器学习之单变量线性回归 利用正规方程找到合适的参数值 本次作业来自吴恩达机器学习. 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方),数据中包括不同 ...
- 机器学习之单变量线性回归(Linear Regression with One Variable)
1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住 ...
- 机器学习 (一) 单变量线性回归 Linear Regression with One Variable
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...
- 吴恩达机器学习(二) 单变量线性回归(Linear Regression with one variable)
一.模型表示 1.一些术语 如下图,房价预测.训练集给出了房屋面积和价格,下面介绍一些术语: x:输入变量或输入特征(input variable/features). y:输出变量或目标变量(out ...
- python 单变量线性回归
单变量线性回归(Linear Regression with One Variable)¶ In [54]: #初始化工作 import random import numpy as np imp ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 2_Linear regression with one variable 单变量线性回归
Lecture2 Linear regression with one variable 单变量线性回归 2.1 模型表示 Model Representation 2.1.1 线性回归 Li ...
- 机器学习(二)--------单变量线性回归(Linear Regression with One Variable)
面积与房价 训练集 (Training Set) Size Price 2104 460 852 178 ...... m代表训练集中实例的数量x代表输入变量 ...
- Coursera《machine learning》--(2)单变量线性回归(Linear Regression with One Variable)
本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation ...
随机推荐
- parseInt和Number的应用区别
parseInt() 和 Number()的应用区别 这两个函数最多的应用就是把一个字符串转换成数据类型. 1.parseInt() parseInt()函数将给定的字符串以指定的基数解析为整数 语法 ...
- Hello World 之旅
本文记录对于下面 `hello.c` 程序在 Linux 上一次运行系统所发生的事情,内容来源于 CSAPP 第一章. #include <stdio.h> int main(int ar ...
- npm init,npm -y, npm install --save,npm install --save-dev
npm init 初始化一个简单的package.json文件,执行该命令后终端会依次询问 name, version, description 等字段 npm init --yes|-y 作用同上, ...
- Mybatis关联查询<association> 和 <collection>
一.背景 1.在系统中一个用户存在多个角色,那么如何在查询用户的信息时同时把他的角色信息查询出来啦? 2.用户pojo: public class SysUser { private Long id; ...
- KVC&KVO&运行时
运行时:要先了解程序运行的三个阶段 1.编译阶段:clang将OC代码转换成C++,查看运行机制调用的方法 2.链接阶段:与我们使用到得库文件进行链接 3.运行阶段:我们要谈的运行时主要针对这个阶段, ...
- codeforces 361 D. Levko and Array(dp+二分)
题目链接:http://codeforces.com/contest/361/problem/D 题意:最多可以修改K次数字,每次修改一个数字变成任意值,C=max(a[i+1]-a[i]):求操作之 ...
- Fiddler 手机爬虫
Fiddler抓包工具 配置Fiddler 添加证书信任,Tools - Options - HTTPS,勾选 Decrypt Https Traffic 后弹出窗口,一路确认 ...from bro ...
- 解决php中文乱码的两种方法
第一种是添加html标签变为如下格式: <html> <head> <meta http-equiv="Content-Type" content=& ...
- 008 Python基本语法元素小结
目录 一.概要 二.保留字 三.温度转换 一.概要 缩进.注释.命名.变量.保留字 数据类型.字符串. 整数.浮点数.列表 赋值语句.分支语句.函数 input().print().eval(). p ...
- 聊聊 Python 的单元测试框架(二):nose 和它的继任者 nose2
作者:HelloGitHub-Prodesire HelloGitHub 的<讲解开源项目>系列,项目地址:https://github.com/HelloGitHub-Team/Arti ...
