该篇内容由个人博客点击跳转同步更新!转载请注明出处!

前言

我是在17年就听说过Clickhouse,那时还未接触过亿数据的运算,那时我在的小公司对于千万数据的解决方案还停留在分库分表,最好的也是使用mycat做的集群。这些解决方案都比较复杂,毕竟通常来说那些需要大量存储的数据基本都是像日志,流水等不需要修改的数据,像客户人员等需要经常维护的信息一般项目也就几万左右,在这些不是非常重要的数据上耗太多时间我个人是觉得有点浪费(但毕竟还是要的嘛),直到我到了新公司才重新拾起了对Clickhouse的学习,下面主要介绍下安装以及下篇会介绍一些简单的用法。

一、ClickHouse简介 文档地址

CH是由俄罗斯“熊哥”开源的一套用于联机分析(OLAP)的列式数据库管理系统(DBMS),它通过针对性的设计,力图解决海量多维度数据的查询性能问题。小白程序员轻松上手,安装和操作就像mysql一样简单。

适用于:
  1. 大多数是读请求
  2. 每次写入大于1000行的数据(不适用于单条插入)
  3. 不修改已添加的数据
  4. 每次查询都从数据库中读取大量的行,但是同时又仅需要少量的列
  5. 宽表,即每个表包含着大量的列
  6. 较少的查询(通常每台服务器每秒数百个查询或更少)
  7. 对于简单查询,允许延迟大约50毫秒
  8. 列中的数据相对较小: 数字和短字符串(例如,每个URL 60个字节)
  9. 处理单个查询时需要高吞吐量(每个服务器每秒高达数十亿行)
  10. 事务不是必须的
  11. 对数据一致性要求低
  12. 每一个查询除了一个大表外都很小
  13. 查询结果明显小于源数据,换句话说,数据被过滤或聚合后能够被盛放在单台服务器的内存中
应用场景

公交轨迹(我自己的应用场景

消费转账流水

日志记录

天气数据

......

二、ClickHouse安装

安装方式有多种(暂未支持windows上安装),官方文档上介绍的安装方式感觉有点复杂,下面介绍一种较为简单的安装方式,通过rpm安装包进行安装,git地址:点击跳转

系统环境:CentOS 7.5

1、下载包需要curl支持,当前系统没有的话需要先通过yum安装一下

sudo yum install -y curl

2、下载安装脚本

curl -s https://packagecloud.io/install/repositories/altinity/clickhouse/script.rpm.sh | sudo bash

3、检查clickhouse安装包全不全

sudo yum list 'clickhouse*'

Available Packages
clickhouse-client.x86_64 18.1.0-1.el7 Altinity_clickhouse
clickhouse-common-static.x86_64 18.1.0-1.el7 Altinity_clickhouse
clickhouse-compressor.x86_64 1.1.54336-3.el7 Altinity_clickhouse
clickhouse-debuginfo.x86_64 18.1.0-1.el7 Altinity_clickhouse
clickhouse-mysql.noarch 0.0.20180319-1 Altinity_clickhouse
clickhouse-server.x86_64 18.1.0-1.el7 Altinity_clickhouse
clickhouse-server-common.x86_64 18.1.0-1.el7 Altinity_clickhouse
clickhouse-test.x86_64 18.1.0-1.el7 Altinity_clickhouse

4、检查没问题的话开始安装服务端和客户端

sudo yum install -y clickhouse-server clickhouse-client

5、检查安装后的包全不全

 sudo yum list installed 'clickhouse*'

Installed Packages
clickhouse-client.x86_64 18.1.0-1.el7 @Altinity_clickhouse
clickhouse-common-static.x86_64 18.1.0-1.el7 @Altinity_clickhouse
clickhouse-server.x86_64 18.1.0-1.el7 @Altinity_clickhouse
clickhouse-server-common.x86_64 18.1.0-1.el7 @Altinity_clickhouse

6、安装成功后首先运行服务端,默认会使用config.xml作为配置文件,也可以通过--config=xxx来指定配置文件

sudo service clickhouse-server start

7、客户端运行,这里的命令啥的和mysql很像,一些命令语法都是差不多的,下面简单试下

clickhouse-client

localhost :) show databases
SHOW DATABASES
┌─name────┐
│ default │
│ system │
└─────────┘ 2 rows in set. Elapsed: 0.030 sec.

这时服务端会有响应信息

ClickHouse client version 18.1.0.
Connecting to localhost:9000 as user default.
Connected to ClickHouse server version 18.1.54396. :)

三、可视化界面安装,官方文档有介绍很多种工具,这里介绍Tabix

上面介绍的操作方式都是在linux上进行操作的,结果什么都需要通过终端进行查看,很不方便,好在有第三方可视化Web界面工具Tabix



Tabix使用安装非常方便,有本地安装和无安装两种方式

1、无安装方式最简单,直接打开官方提供的地址:点击跳转



在上面输入你Clickhouse运行的地址、端口、登录名、密码等信息就好了。

2、本地安装方式

本地需要web服务器,所以先安装一个nginx,具体安装不再细说,网上资料有很多,nginx配置

server {
listen 80;
server_name ui.tabix.io;
charset utf-8;
root /var/www/tabix.ui/build;
location / {
if (!-f $request_filename) {
rewrite ^(.*)$ /index.html last;
}
index index.html index.htm;
}
}

然后下载最新的安装文件:点击跳转,并且解压将build文件夹拷贝到nginx对应的目录下,然后浏览运行看下效果,具体登录操作和上面一样。

四、扩充

集群的安装可参考这篇文章:点击跳转

使用Prometheus进行系统的监控

使用Grafana监控数据库的性能

下一篇将介绍数据操作的一些类库

微信关注我哦!(转载注明出处)

.Net轻松处理亿级数据--clickhouse及可视化界面安装介绍的更多相关文章

  1. .Net轻松处理亿级数据--ClickHouse数据操作

    该篇内容由个人博客点击跳转同步更新!转载请注明出处! 我不喜欢拿一堆数据的运行耗时来对比各个解决方案的性能等,有时候看一些测评长篇大论写耗时的一些对比,有时就差个 几百毫秒 我觉得也没啥必要,关键是好 ...

  2. 超实用的mysql分库分表策略,轻松解决亿级数据问题

    一.分库分表的背景 在数据爆炸的年代,单表数据达到千万级别,甚至过亿的量,都是很常见的情景.这时候再对数据库进行操作就是非常吃力的事情了,select个半天都出不来数据,这时候业务已经难以维系.不得已 ...

  3. 基于Mysql数据库亿级数据下的分库分表方案

    移动互联网时代,海量的用户数据每天都在产生,基于用户使用数据的用户行为分析等这样的分析,都需要依靠数据都统计和分析,当数据量小时,问题没有暴露出来,数据库方面的优化显得不太重要,一旦数据量越来越大时, ...

  4. 挑战海量数据:基于Apache DolphinScheduler对千亿级数据应用实践

    点亮 ️ Star · 照亮开源之路 GitHub:https://github.com/apache/dolphinscheduler 精彩回顾 近期,初灵科技的大数据开发工程师钟霈合在社区活动的线 ...

  5. MySQL使用pt-online-change-schema工具在线修改1.6亿级数据表结构

    摘  要:本文阐述了MySQL DDL 的问题现状.pt-online-schema-change的工作原理,并实际利用pt-online-schema-change工具在线修改生产环境下1.6亿级数 ...

  6. 通用技术 mysql 亿级数据优化

    通用技术 mysql 亿级数据优化 一定要正确设计索引 一定要避免SQL语句全表扫描,所以SQL一定要走索引(如:一切的 > < != 等等之类的写法都会导致全表扫描) 一定要避免 lim ...

  7. 不停机不停服务,MYSQL可以这样修改亿级数据表结构

    摘  要:本文阐述了MySQL DDL 的问题现状.pt-online-schema-change的工作原理,并实际利用pt-online-schema-change工具在线修改生产环境下1.6亿级数 ...

  8. Mongodb亿级数据量的性能测试

    进行了一下Mongodb亿级数据量的性能测试,分别测试如下几个项目:   (所有插入都是单线程进行,所有读取都是多线程进行) 1) 普通插入性能 (插入的数据每条大约在1KB左右) 2) 批量插入性能 ...

  9. 巧用redis位图存储亿级数据与访问 - 简书

    原文:巧用redis位图存储亿级数据与访问 - 简书 业务背景 现有一个业务需求,需要从一批很大的用户活跃数据(2亿+)中判断用户是否是活跃用户.由于此数据是基于用户的各种行为日志清洗才能得到,数据部 ...

随机推荐

  1. laravel中使用FormRequest进行表单验证,验证异常返回JSON

    通常在项目中,我们会对大量的前端提交过来的表单进行验证,如果不通过,则返回错误信息. 前端为了更好的体验,都使用ajax进行表单提交,虽然 validate() 方法能够根据前端的不同请求方式,返回不 ...

  2. 用.net core实现反向代理中间件

    最近在将一些项目的rest api迁移到.net core中,最开始是用的Nginx做反向代理,将已经完成切换的部分切入系统,如下图所示: 由于迁移过程中也在进行代码重构,需要经常比较频繁的测试,以保 ...

  3. SSM(七)在JavaWeb应用中使用Redis

    前言 先来看一张效果图: 作用就是在每次查询接口的时候首先判断Redis中是否有缓存,有的话就读取,没有就查询数据库并保存到Redis中,下次再查询的话就会直接从缓存中读取了.Redis中的结果:之后 ...

  4. 初学Python常见异常错误,总有一处你会遇到!

    初学Python常见错误 忘记写冒号 误用= 错误 缩紧 变量没有定义 中英文输入法导致的错误 不同数据类型的拼接 索引位置问题 使用字典中不存在的键 忘了括号 漏传参数 缺失依赖库 使用了pytho ...

  5. golang中type常用用法

    golang中,type是非常重要的关键字,一般常见用法就是定义结构,接口等,但是type还有很多其它的用法,在学习中遇到了以下几种,这点简单总结记录下 定义结构 type Person struct ...

  6. XSS攻击(跨站脚本攻击)

    一.什么是XSS?怎么发生的? XSS(Cross site scripting)全称为跨站脚本攻击,是web程序中最常见的漏洞.指攻击者在网页中嵌入客户端脚本(例如Javascript),当用户浏览 ...

  7. HTTP面试常见题

    1.HTTP2.0.1.1.1.0.0.9的区别? 答:HTTP0.9:是HTTP协议的第一个版本,只允许发送get请求,并且不支持请求头.一次请求对应一次响应.是短连接. HTTP1.0:相比于0. ...

  8. 【cf741】D. Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(dsu on tree)

    传送门 题意: 给出一颗以\(1\)为根的有根树,树边带有一个字符(\(a\)~\(v\))的信息. 输出对于每个结点,其子树内最长的简单路径并且满足边上的字符能够组成回文串. 思路: 显然最终的答案 ...

  9. JS之for循环面试题

    今天同事问了道问题 ,b=; ,b<;++a,++b){ g=a+b } console.log(g) 问输出结果为多少??? 答案:12 这里要知道for循环的条件不管写多少个,必须都满足才可 ...

  10. Tensorflow之变量赋值输出1+2+3+4+5+6+7+8+...

    一.导入tensorflow import tensorflow as tf 二.定义计算图 (1)常量初始化 constant_name = tf.constant(value) (2)变量初始化 ...