04-03 scikit-learn库之AdaBoost算法
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/
scikit-learn库之AdaBoost算法
当我们对Adaboost调参时,主要要对两部分内容调参,第一部分是对Adaboost的框架进行调参,第二部分是对弱学习器调参。本文主要介绍AdaBoost的两个模型AdaBoostClassifier和AdaBoostRegressor,会详解介绍AdaBoostClassifier模型,然后会对比着讲解AdaBoostRegressor模型。
接下来将会讨论上述两者的区别,由于是从官方文档翻译而来,翻译会略有偏颇,有兴趣的也可以去scikit-learn官方文档查看https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble
一、AdaBoostClassifier
1.1 使用场景
AdaBoostClassifier模型主要解决分类问题,并且它在scikit-learn库中使用了两种分类算法的实现,分别是SAMME和SAMME.R。
1.2 参数
- base_estimator:弱分类器类型,object类型。理论上可以选择任何一个弱分类器,不过需要支持样本权重,一般用决策树或神经网络。如果algorithm='SAMME.R',弱分类器应该支持概率预测,即支持predict_proba()方法。如果为默认值,算法会选择一个最大深度为1的决策树。默认为None。
- n_estimators:最大迭代次数,int类型。弱学习器的最大迭代次数,如果迭代次数太小,容易欠拟合;如果迭代次数太大,容易过拟合。默认为50。
- learning_rate:权重缩减系数,float类型。这个参数是正则化项的参数\(\lambda\)。较小的\(\lambda\)需要更多的迭代次数,即learning_rate和n_estimators需要一起调参。默认为1。
- algorithm:算法类型,str类型。该参数主要用来度量学习器的权重。默认为'SAMME.R'。
- 'SAMME':使用样本集分类效果作为弱分类器权重
- 'SAMME.R':使用样本集分类的预测概率大小作为弱分类器权重
- random_state:随机数种子,int类型。使用后可以保证随机数不会随着时间的变化而变化。默认为None。
1.3 属性
- estimators_:list类型。弱学习集合。
- classes_:array类型。类别列表。
- n_classes_:int类型。类别数。
- estimator_weights_:array类型。每个弱学习的权重。
- estimator_errors_:array类型。每个弱学习额分类误差。
- feature_importances_:array类型。返回特征重要度。
1.4 方法
- decision_function(X):计算样本X的决策函数值。
- fit(X,y):把数据放入模型中训练模型。
- get_params([deep]):返回模型的参数,可以用于Pipeline中。
- predict(X):预测样本X的分类类别。
- predict_log_proba(X):返回样本X在各个类别上对应的对数概率。
- predict_proba(X):返回样本X在各个类别上对应的概率。
- score(X,y[,sample_weight]):基于报告决定系数\(R^2\)评估模型。
- set_prams(**params):创建模型参数。
- staged_decision_function(X):返回每个阶段样本X的决策函数值。
- staged_predict(X):返回每个阶段样本X的预测值。
- staged_predict_proba(X):返回每个阶段样本X在各个类别上对应的概率。
- staged_score(X,y[,sample_weight]):返回每个阶段样本X的\(R^2\)分数。
二、AdaBoostRegressor
AdaBoostRegressor模型和AdaBoostClassfier模型参数上差不多,只是前者一般用来解决回归问题,后者用来解决分类问题,预测值处理方式不同。并且AdaBoostRegressor模型在scikit-learn库中只是用了Adaboost.R2算法实现。
AdaBoostRegressor模型没有参数'algorithm',而是使用了loss参数,即误差函数{'linear','square','exponential'}的选择。
04-03 scikit-learn库之AdaBoost算法的更多相关文章
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- SIGAI机器学习第二十二集 AdaBoost算法3
讲授Boosting算法的原理,AdaBoost算法的基本概念,训练算法,与随机森林的比较,训练误差分析,广义加法模型,指数损失函数,训练算法的推导,弱分类器的选择,样本权重削减,实际应用. AdaB ...
- AdaBoost 算法-分析波士顿房价数据集
公号:码农充电站pro 主页:https://codeshellme.github.io 在机器学习算法中,有一种算法叫做集成算法,AdaBoost 算法是集成算法的一种.我们先来看下什么是集成算法. ...
- 集成学习之Adaboost算法原理小结
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系.前者的代表算法就是是boostin ...
- Adaboost 算法
一 Boosting 算法的起源 boost 算法系列的起源来自于PAC Learnability(PAC 可学习性).这套理论主要研究的是什么时候一个问题是可被学习的,当然也会探讨针对可学习的问题的 ...
- Adaboost 算法的原理与推导
0 引言 一直想写Adaboost来着,但迟迟未能动笔.其算法思想虽然简单“听取多人意见,最后综合决策”,但一般书上对其算法的流程描述实在是过于晦涩.昨日11月1日下午,邹博在我组织的机器学习班第8次 ...
- 一个关于AdaBoost算法的简单证明
下载本文PDF格式(Academia.edu) 本文给出了机器学习中AdaBoost算法的一个简单初等证明,需要使用的数学工具为微积分-1. Adaboost is a powerful algori ...
- Adaboost算法初识
1.算法思想很简单: AdaBoost 是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器,即弱分类器,然后把这些弱分类器集合起来,构造一个更强的最终分类器.(三个臭皮匠,顶个诸葛亮) 它的 ...
随机推荐
- SpringBoot系列__01HelloWorld
接触SpringBoot很久了,但是一直没有很深入的研究一下源码,最近重启了博客,顺便开始深入研究一下技术. 1.简介 参照官方文档的说法,SpringBoot的设计理念就是为了简化Java程序员搭建 ...
- 8 分钟入门 K8s | 详解容器基本概念
作者| 阿里巴巴高级开发工程师 傅伟 一.容器与镜像 什么是容器? 在介绍容器的具体概念之前,先简单回顾一下操作系统是如何管理进程的. 首先,当我们登录到操作系统之后,可以通过 ps 等操作看到各式各 ...
- 锁和synchronized
锁的常见概念 互斥: 同一时刻只有一个线程执行 临界区:一段需要互斥执行的代码 细粒度锁: 用不同的锁对受保护资源进行精细化管理. 细粒度锁可以提高并行度,是性能优化的一个重要手段 死锁 :一组互相竞 ...
- 时间复杂度big-O、Big-Omega和big-Theta
我们有三种曲线: A curve that we know is "above" the running time function when n is large. ( Bi ...
- sql 删除完全表中完全重复的数据保留一条
1.删除完全重复数据 原始数据: 期望数据: delete result from (select ROW_NUMBER () over(partition by id order by id) r, ...
- 解决The mysql extension is deprecated and will be removed
今天打开网站突然发现报错:“PHP Deprecated: mysql_connect(): The mysql extension is deprecated and will be remove ...
- java.lang.UnsupportedClassVersionError:JDK版本不一致报错
交代一下背景:公司运行的一个上线项目,打了个补丁发给客户后,反馈说运行不了.把源码拿回来场景重现.贴上报错信息: 08-15 14:13:29 ERROR doPost(jcm.framework.r ...
- 【学习笔记】python3核心技术与实践--开篇词
python的应用和流行程度: Python 可以运用在数据处理.Web 开发.人工智能等多个领域,它的语言简洁.开发效率高.可移植性强,并且可以和其他编程语言(比如 C++)轻松无缝衔接.现如今,不 ...
- STL迭代器
大部分ACM中使用的都是C/C++语言,但是说到C语言和C++语言的区别,却不知道. C++语言用于竞赛真的是非常方便的,里面有很多函数还有STL这个好东西,比C语言方便,比其他语言好理解. 在C语言 ...
- 增删改查——PreparedStatement接口
1.添加 package pers.Pre.add; import java.sql.Connection; import java.sql.DriverManager; import java.sq ...