Solved Pro.ID Title Ratio(Accepted / Submitted)
  1001 A + B = C                   10.48%(301/2872)
  1002 Bracket Sequences on Tree 11.27%(16/142)
  1003 Cuber Occurrence 6.67%(1/15)
  1004 Data Structure Problem 23.08%(3/13)
  1005 Equation 0.00%(0/63)
  1006 Final Exam          推公式,田忌赛马 5.06%(297/5872)
  1007 Getting Your Money Back 12.42%(20/161)
  1008 Halt Hater 14.77%(61/413)
  1009 Intersection of Prisms 0.00%(0/2)
  1010 Just Repeat          博弈,贪心 15.04%(128/851)
  1011 Kejin Player          期望DP 21.20%(544/2566)

1001 A + B = C

题意:

给定a,b,c($a, b, c \le 10 ^{100000}$),求一组x, y, z满足$a \times 10^x + b \times 10^y = c \times 10^z$ 。

思路:

先把每个数末尾的0去掉,然后可以发现满足如下等式之一$$ a + b = c \times 10 ^k $$ $$ a \times 10 ^k + b = c $$ $$ a + b \times 10 ^ k = c$$就行了。

由于是大数,可以利用哈希,计算等式中的k,可以移项,乘逆元,预处理mod意义下指数。

然后我用到双哈希保险

// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert>
#include <unordered_map>
// #include<bits/extc++.h>
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a) typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll; const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = ; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/**********showtime************/
const int maxn = 1e5+;
const int N = 1e5+;
char a[maxn],b[maxn],c[maxn];
char d[maxn];
int mod1 = , mod2 = 1e9+;
int ten1[N], ten2[N];
unordered_map<int,int>mp1,mp2;
void init(){
ten1[] = ten2[] = ;
mp1[] = mp2[] = ;
for(int i=; i<N; i++)
{
ten1[i] = 1ll*ten1[i-] * % mod1;
ten2[i] = 1ll*ten2[i-] * % mod2; mp1[ten1[i]] = i;
mp2[ten2[i]] = i;
}
}
ll ksm(ll a, ll b, ll mod){
ll res = ;
while(b > ) {
if(b & ) res = res * a % mod;
a = a * a % mod;
b = b >> ;
}
return res;
}
int main(){
init();
// debug("ok");
int T; scanf("%d", &T); while(T--) {
scanf("%s%s%s", a, b, c);
int alen = strlen(a), blen = strlen(b), clen = strlen(c);
int cnta = , cntb = , cntc = ;
while(a[alen-] == '') alen--, cnta ++;
while(b[blen-] == '') blen--, cntb ++;
while(c[clen-] == '') clen--, cntc ++;
int kk = max(cnta, max(cntb, cntc));
a[alen] = '\0';
b[blen] = '\0';
c[clen] = '\0';
ll A1 = , B1 = , C1 = ;
ll A2 = , B2 = , C2 = ; for(int i=; i<alen; i++){
A1 = (A1 * + (a[i] - '') ) % mod1;
A2 = (A2 * + (a[i] - '') ) % mod2;
} for(int i=; i<blen; i++){
B1 = (B1 * + (b[i] - '') ) % mod1;
B2 = (B2 * + (b[i] - '') ) % mod2;
} for(int i=; i<clen; i++){
C1 = (C1 * + (c[i] - '') ) % mod1;
C2 = (C2 * + (c[i] - '') ) % mod2;
} int k1 = (A1 + B1) % mod1 * ksm(C1, mod1-, mod1) % mod1;
if(mp1.count(k1))k1 = mp1[k1];
else k1 = -;
int k2 = (A2 + B2) % mod2 * ksm(C2, mod2-, mod2) % mod2;
if(mp2.count(k2))k2 = mp2[k2];
else k2 = -;
if(k1 == k2 && k1 >= ) {
printf("%d %d %d\n", kk - cnta, kk - cntb, kk + k1 - cntc);
continue;
} k1 = (C1 - B1) % mod1;
if(k1 < ) k1 += mod1;
k1 = k1 * ksm(A1, mod1-, mod1) % mod1;
if(mp1.count(k1))k1 = mp1[k1];
else k1 = -; k2 = (C2 - B2) % mod2;
if(k2 < ) k2 += mod2;
k2 = k2 * ksm(A2, mod2-, mod2) % mod2;
if(mp2.count(k2))k2 = mp2[k2];
else k2 = -;
if(k1 == k2 && k1 >= ) {
printf("%d %d %d\n", kk + k1 - cnta, kk - cntb, kk - cntc);
continue;
} k1 = (C1 - A1) % mod1;
if(k1 < ) k1 += mod1;
k1 = k1 * ksm(B1, mod1-, mod1) % mod1;
if(mp1.count(k1))k1 = mp1[k1];
else k1 = -; k2 = (C2 - A2) % mod2;
if(k2 < ) k2 += mod2;
k2 = k2 * ksm(B2, mod2-, mod2) % mod2;
if(mp2.count(k2))k2 = mp2[k2];
else k2 = -;
if(k1 == k2 && k1 >= ) {
printf("%d %d %d\n", kk - cnta, kk + k1 - cntb, kk - cntc);
continue;
}
puts("-1");
}
return ;
}

1006 Final Exam

思路:

假设每个题目所用的时间为$a_1, a_2, ... , a_n(a_i <= a_{i+1})$

按老师的想法,为了不让学生过掉n - k 个题目,肯定是把$a_1, a_2,...a_{n-k}$ 对应题目的分值设为$a_1, a_2,...a_{n-k}$.

然后$$m - a_1 - a_2 - ... - a_{n-k} < a_{n-k+1}$$

我们给左边+1,再移项,变成

$$m + 1 \le + a_1 + a_2 + ... + a_{n-k} + a_{n-k+1}$$

可以发现$a_{n-k+1}$最大会被老师卡成$\left\lceil  \frac{m + 1}{n - k + 1} \right\rceil$

之后的$a_{n-k+2},,,a_{n}$可以等于$a_{n-k+1}$就行了。

// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert>
// #include<bits/extc++.h>
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a) typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll; const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = ; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/**********showtime************/ int main(){
int T; scanf("%d", &T);
while(T--) {
ll n, m , k;
scanf("%lld%lld%lld", &n, &m, &k);
ll tmp = (m + ) / (n - k + );
if((m+) % (n - k + )) tmp++;
ll ans = (k - ) * tmp + m+ ;
printf("%lld\n", ans);
} return ;
}

1008 Halt Hater

题意:

一开始你在(0, 0)点,面向Y轴正方向。向左走费用为a,向前走费用为b,向右走费用为0。有T($\le 100000$) 组数据,每组给定x,y,a,b,问你到(x,y)的最小费用。

思路:

规律题,首先发现,你到(x-1, y+1)(x, y+1), (x-1, y), (x, y) 其中之一就行了。

然后发现,如果把每个格子看成一个点,那么,相邻格子的费用为a。斜对着的两个格子的费用为min(a, 2 * b)。

一下跨两步的费用为min(2*a, 2*b)。

所以我们首先斜着走,然后两步两步走,然后再走一步。

// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize(4)
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert>
#include <unordered_map>
// #include<bits/extc++.h>
// using namespace __gnu_pbds;
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a) typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll; const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int mod = ; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/**********showtime************/ ll a, b, x, y;
ll check(ll x, ll y) { x = abs(x), y = abs(y); ll ans = ;
ll m = min(x, y); ans += m * min(a, 2ll * b);
ll yu = x + y - m - m;
ans += (yu / ) * min(2ll * a , 2ll * b); if(yu % == ) ans += b;
return ans;
}
int main(){
int T; scanf("%d", &T);
while(T--) {
scanf("%lld%lld%lld%lld", &a, &b, &x, &y);
ll ans = check(x, y);
ans = min(ans, check(x-, y));
ans = min(ans, check(x, y+));
ans = min(ans, check(x-, y+));
printf("%lld\n", ans);
}
return ;
}

2019dx#7的更多相关文章

  1. 2019DX#10

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Minimum Spanning Trees 22.22%(2/9)   1002 Lin ...

  2. 2019dx#9

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Rikka with Quicksort 25.85%(38/147)   1002 Ri ...

  3. 2019DX#8

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Acesrc and Cube Hypernet 7.32%(3/41)   1002 A ...

  4. 2019DX#6

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Salty Fish 16.28%(7/43)  OK 1002 Nonsense Tim ...

  5. 2019DX#5

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 fraction 辗转相除 4.17%(7/168) ok  1002 three arr ...

  6. 2019dx#4

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 AND Minimum Spanning Tree 31.75%(1018/3206)   ...

  7. 2019DX#3

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Azshara's deep sea 凸包 6.67%(6/90)  

  8. 2019DX#2

    Solved Pro.ID Title Ratio(Accepted / Submitted)   1001 Another Chess Problem 8.33%(1/12)   1002 Beau ...

  9. 2019DX#1

    1001 Blank 题意 有一个长度为n(n<=100)的位子,填入四种颜色,有m个限制,某个区间的颜色个数要恰好等于x个.问颜色个数的方案数. 思路 DP 四维的DP,利用滚动数组优化一维空 ...

随机推荐

  1. 02 | 健康之路 kubernetes(k8s) 实践之路 : 生产可用环境及验证

    上一篇< 01 | 健康之路 kubernetes(k8s) 实践之路 : 开篇及概况 >我们介绍了我们的大体情况,也算迈出了第一步.今天我们主要介绍下我们生产可用的集群架设方案.涉及了整 ...

  2. 【iOS】手动抛出异常

    之前没遇到过需要手动抛出异常的时候,这次见到了,记录一下.示例代码如下: /** 如果调用 [[BNRItemStore alloc] init],就提示应该使用 [BNRItemStore shar ...

  3. 【未解决】iOS QBImagePickerController访问相册没有取消和确定按钮

    这两天调程序时遇到了这个问题,如图所示: 感觉这问题也是奇葩………… 用系统的 UIImagePickerController 替换后就正常了.看来是 QBImagePickerController ...

  4. springboot+kafka+邮件发送(最佳实践)

    导读 集成spring-kafka,生产者生产邮件message,消费者负责发送 引入线程池,多线程发送消息 多邮件服务器配置 定时任务生产消息:计划邮件发送 实现过程 导入依赖 <proper ...

  5. js获取手机系统语言

    只需 navigator.language 就可以获取手机系统语言,要做国际化的童鞋可以看看 如图:(第一次是简体,第二次切换English),zh-CN,en-US是语言代码 更多语言代码,请查看h ...

  6. 【Python-Django后端开发】配置静态文件详解!!!

    配置前端静态文件 1. 准备静态文件 2. 指定静态文件加载路径 STATIC_URL = '/static/' # 配置静态文件加载路径 STATICFILES_DIRS = [os.path.jo ...

  7. Pyenv虚拟环境的创建(虚拟机)

    创建pyenv虚拟环境 sudo yum install openssl* 安装其所需要的库文件 git clone https://github.com/yyuu/pyenv.git ~/.pyen ...

  8. str_replace导致的注入问题汇总

    研究了下replace的注入安全问题. 一般sql注入的过滤方式就是引用addslashes函数进行过滤. 他会把注入的单引号转换成\',把双引号转换成\",反斜杠会转换成\\等 写一段ph ...

  9. UR机器人通信--上位机通信(python)

    一.通信socket socket()函数 Python 中,我们用 socket()函数来创建套接字,语法格式如下: socket.socket([family[, type[, proto]]]) ...

  10. modbus-tcp协议讲解

    MODBUS功能码简介 代码 中文名称 位操作/字操作 操作数量 01h 读线圈状态 位操作 单个或多个 02h 读离散输入状态(只能读到0或1) 位操作 单个或多个 03h 读保持寄存器(保持寄存器 ...