题目链接

Operation

Problem Description

There is an integer sequence a of length n and there are two kinds of operations:

  • 0 l r: select some numbers from al...ar so that their xor sum is maximum, and print the maximum value.

  • 1 x: append x to the end of the sequence and let n=n+1.

Input

There are multiple test cases. The first line of input contains an integer T(T≤10), indicating the number of test cases.

For each test case:

The first line contains two integers n,m\((1≤n≤5×10^5,1≤m≤5×10^5)\), the number of integers initially in the sequence and the number of operations.

The second line contains n integers \(a1,a2,...,an(0≤ai<2^{30})\), denoting the initial sequence.

Each of the next m lines contains one of the operations given above.

It's guaranteed that \(∑n≤10^6,∑m≤10^6,0≤x<2^{30}\).

And operations will be encrypted. You need to decode the operations as follows, where lastans denotes the answer to the last type 0 operation and is initially zero:

For every type 0 operation, let l=(l xor lastans)mod n + 1, r=(r xor lastans)mod n + 1, and then swap(l, r) if l>r.

For every type 1 operation, let x=x xor lastans.

Output

For each type 0 operation, please output the maximum xor sum in a single line.

Sample Input

1

3 3

0 1 2

0 1 1

1 3

0 3 4

Sample Output

1

3

题意

给一个长度为n的数组m个操作

  • 0 x y 查询区间\([x,y]\)取任意个数能异或出的最大值
  • 1 x 向数组尾部添加一个数x

强制在线

题解

朴素的线性基只能查询1-n能异或出的最大值,这题我们可以保存\([1,n]\)每个前缀线性基的状态,查询x,y时只需要查询第y个前缀的线性基就行

但是前缀里会有1-x的线性基影响结果,我们可以在插入线性基时做处理,如果在第pos位上已经有数,且这个数的插入时间比我当前数的插入时间早,那么就把当前要插入的数与该数交换,当前插入时间也交换,直至当前数无法插入或变为0

这样可以让前缀线性基里的数都是越新的,查询的时候判断线性基上数的插入时间是否大于等于x,如果大于x就可以使用这个数。这样处理的正确性是因为线性基插入不受顺序影响,同一组数以不同顺序插入,最后得到的线性基都是等价的

代码

#include <bits/stdc++.h>

const int mx = 1e6+5;
typedef long long ll; int sum[mx][32];
int pos[mx][32];
int tot; void add(int num) {
++tot;
for (int i = 0; i < 32; i++) {
sum[tot][i] = sum[tot-1][i];
pos[tot][i] = pos[tot-1][i];
} int now = tot;
for (int i = 30; i >= 0; i--) {
if (num & (1<<i)) {
if (sum[tot][i] == 0) {
sum[tot][i] = num;
pos[tot][i] = now;
break;
} if (now > pos[tot][i]) {
std::swap(now, pos[tot][i]);
std::swap(num, sum[tot][i]);
}
num ^= sum[tot][i];
}
}
} int query(int l, int r) {
int ans = 0;
for (int i = 30; i >= 0; i--) {
if (sum[r][i] && pos[r][i] >= l) {
ans = std::max(ans, ans ^ sum[r][i]);
}
}
return ans;
} int main() {
int T;
scanf("%d", &T); while (T--) {
int lastans = 0; tot = 0;
int n, m, num;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &num);
add(num);
} while (m--) {
int op, l, r;
scanf("%d", &op);
if (op == 0) {
scanf("%d%d", &l, &r);
l = (l ^ lastans) % n + 1;
r = (r ^ lastans) % n + 1;
if (l > r) std::swap(l, r);
lastans = query(l, r);
printf("%d\n", lastans);
} else {
scanf("%d", &r);
add(r ^ lastans);
n++;
}
}
}
return 0;
}

hdu-6579 Operation的更多相关文章

  1. hdu 6579 Operation (在线线性基)

    传送门 •题意 一个数组a有n个数 m个操作 操作① 询问$[l,r]$区间的异或值 操作② 在数组末尾追加一个数x,数组长度变为$n+1$ 其中$l,r$不直接给出,其中$l=l%n+1,r=r%n ...

  2. 杭电多校HDU 6579 Operation (线性基 区间最大)题解

    题意: 强制在线,求\(LR\)区间最大子集异或和 思路: 求线性基的时候,记录一个\(pos[i]\)表示某个\(d[i]\)是在某个位置更新进入的.如果插入时\(d[i]\)的\(pos[i]\) ...

  3. HDU 5063 Operation the Sequence(暴力)

    HDU 5063 Operation the Sequence 题目链接 把操作存下来.因为仅仅有50个操作,所以每次把操作逆回去执行一遍,就能求出在原来的数列中的位置.输出就可以 代码: #incl ...

  4. HDU 5063 Operation the Sequence(仔细审题)

    http://acm.hdu.edu.cn/showproblem.php?pid=5063 题目大意: 题目意思还是比较简单.所以就不多少了.注意这句话,对解题有帮助. Type4: Q i que ...

  5. hdu 5063 Operation the Sequence

    http://acm.hdu.edu.cn/showproblem.php?pid=5063 思路:因为3查询最多50,所以可以在查询的时候逆操作找到原来的位置,然后再求查询的值. #include ...

  6. hdu 5063 Operation the Sequence(Bestcoder Round #13)

    Operation the Sequence                                                                     Time Limi ...

  7. HDU 5063 Operation the Sequence(暴力 数学)

    题目链接:pid=5063" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=5063 Prob ...

  8. HDU - 5036 Operation the Sequence

    Problem Description You have an array consisting of n integers: a1=1,a2=2,a3=3,-,an=n. Then give you ...

  9. 计蒜客 A1607 UVALive 8512 [ACM-ICPC 2017 Asia Xi'an]XOR

    ICPC官网题面假的,要下载PDF,点了提交还找不到结果在哪看(我没找到),用VJ交还直接return 0;也能AC 计蒜客题面 这个好 Time limit 3000 ms OS Linux 题目来 ...

  10. CodeForces 1100F Ivan and Burgers

    CodeForces题面 Time limit 3000 ms Memory limit 262144 kB Source Codeforces Round #532 (Div. 2) Tags da ...

随机推荐

  1. X-Admin&ABP框架开发-系统日志

    网站正常运行中有时出现异常在所难免,查看系统运行日志分析问题并能够根据错误信息快速解决问题尤为重要,ABP对于系统运行日志这块已经做了很好的处理,默认采用的Log4Net已经足够满足开发过程中的需要了 ...

  2. DesignPattern系列__10单例模式

    单例模式介绍 单例模式,是为了确保在整个软件体统中,某个类对象只有一个实例,并且该类通常会提供一个对外获取该实例的public方法(静态方法). 比如日志.数据库连接池等对象,通常需要且只需要一个实例 ...

  3. python 字符串格式化format

    通过{}和:来代替传统%方式   1.位置参数 位置参数不受顺序约束,且可以为{},只要format里有相对应的参数值即可,参数索引从0开,传入位置参数列表可用*列表 >>> li ...

  4. Oracle RAC 集群启动与停止

    Oracle RAC 启动时,需要使用 root 用户执行,为了方便,写了启动和停止的脚本, 将该脚本放到 /root/bin ,因为bin 目录本身就在环境变量里,所以使用时直接root用户运行脚本 ...

  5. 【Java例题】2.8 解一元二次方程

    8.解一元二次方程. 输入一元二次方程的a,b,c三个系数,解一元二次方程 ax^2+bx+c=0,输出两个根 package study; import java.util.Scanner; pub ...

  6. Spring Boot 整合 JPA 使用多个数据源

    介绍 JPA(Java Persistence API)Java 持久化 API,是 Java 持久化的标准规范,Hibernate 是持久化规范的技术实现,而 Spring Data JPA 是在 ...

  7. kafka同步异步消费和消息的偏移量(四)

    1. 消费者位置(consumer position) 因为kafka服务端不保存消息的状态,所以消费端需要自己去做很多事情.我们每次调用poll()方法他总是返回已经保存在生产者队列中还未被消费者消 ...

  8. SpringBoot学习系列之一(反射)

    最近在学习SpringBoot的知识,动起手来学习的时候才发现SpringBoot项目采用了大量的反射机制,晕,作为一个应届毕业生,以前学习反射的时候给我的感觉就是,这个到底用来干嘛的,好像没啥用啊, ...

  9. C语言编程入门之--第五章C语言基本运算和表达式-part2

    5.1.4 再来一个C库函数getchar吸收回车键 回车键也是一个字符,在使用scanf的时候,输入完毕要按下回车键,这时候回车键也会被输入到stdin流中,会搞乱我们的程序. 注意:stdin是输 ...

  10. Java学习|强引用,软引用,弱引用,幻想引用有什么区别?

    在Java语言中,除了基本数据类型外,其他的都是指向各类对象的对象引用:Java中根据其生命周期的长短,将引用分为4类. 1 强引用 特点:我们平常典型编码Object obj = new Objec ...