Paper | No-reference Quality Assessment of Deblocked Images
目录
发表在2016年Neurocomputing。
摘要
JPEG is the most commonly used image compression standard. In practice, JPEG images are easily subject to blocking artifacts at low bit rates. To reduce the blocking artifacts, many deblocking algorithms have been proposed. However, they also introduce certain degree of blur, so the deblocked images contain multiple distortions. Unfortunately, the current quality metrics are not designed for multiply distorted images, so they are limited in evaluating the quality of deblocked images. To solve the problem, this paper presents a no-reference (NR) quality metric for deblocked images. A DeBlocked Image Database (DBID) is first built with subjective Mean Opinion Score (MOS) as ground truth. Then a NR DeBlocked Image Quality (DBIQ) metric is proposed by simultaneously evaluating blocking artifacts in smooth regions and blur in textured regions. Experimental results conducted on the DBID database demonstrate that the proposed metric is effective in evaluating the quality of deblocked images, and it significantly outperforms the existing metrics. As an application, the proposed metric is further used for automatic parameter selection in image deblocking algorithms.
结论
Image deblocking has been extensively researched for removing blocking artifacts in JPEG images. However, the quality evaluation of such deblocked images is still an open problem. In this paper, we have presented a no-reference quality model for evaluating the quality of deblocked images. Blocking artifacts in smooth regions and blur effects in textured regions are considered in the proposed model. It is a moment-based metric, where the Tchebichef moments are used to achieve: (1) block classification, (2) blocking artifact evaluation, and (3) blur evaluation. We have also built a deblocked image database DBID to compare the performances of image deblocking algorithms, and also to verify the performance of the proposed method. The experimental results have demonstrated that the proposed method is effective in evaluating the quality of deblocked images, and it significantly outperforms the state-of-the-art blocking artifact metrics, blur metrics and general-purpose NR image quality metrics. As an application of the proposed model, we have also used DBIQ for automatic parameter tuning in image deblocking algorithm, producing very promising results.
In this work, the proposed quality model is based on the Tchebichef moments of gray-scale images. However, color also affects the quality of deblocked images, so the performance of the proposed metric could be further enhanced by incorporating color information. A straightforward way to improve DBIQ is to use quaternion-type moments [51]. Furthermore, the presented work mainly focus on deblocked JPEG images. More general deblocking scenarios, e.g., deblocking loop filter in H.264/AVC, will be investigated in future work.
要点
我们讨论JPEG压缩图像的块效应。
许多去块效应方法都会引入模糊,导致图像中存在多重失真。然而,现存质量指标都只局限于单一失真(比如块效应),没有考虑模糊等其他失真。
为了解决这一问题,本文针对去块效应的图像(deblocked images),提出了一种无参考质量评价指标:NR DeBlocked Image Quality(DBIQ)。
方法核心:同时评估平滑区域的块效应,以及纹理区域的模糊程度。
具体而言,作者采用了切比雪夫矩(Tchebichef moments),同时实现了块分类、块效应评估和模糊程度评估。
本文还有建库等贡献。作者将预测的指标用于去块效应算法,发现实验结果有所提升,证明了该指标的有效性。
局限:只考虑了灰度图像;只考虑了JPEG图像。
故事背景
作者观察了借助去块效应算法[14]得到的图像,发现:去块效应图像的平滑区域容易遭受(残留)块效应影响,而纹理区域容易变模糊。
The deblocked images are contaminated by both blocking artifacts and blur. Blocking artifacts mainly affect the quality of smooth regions and blur mainly affects the quality of textured regions.
基于此观察,作者提出用离散切比雪夫矩,同时评估块效应和模糊。
本文方法(DBIQ)
DBIQ由两部分组成:
块效应指标RMB[26],是当时最好的检测块效应指标;
基于矩的模糊检测模块。
整体框图:

流程大致如下:
- 首先,deblocked图像被不重叠地分为\(8 \times 8\)的目标块。\(8 \times 8\)应该是JPEG编码块的尺寸。
对于每一个目标块,计算切比雪夫矩。根据非直流分量的平方和(the sum of squared non-DC moment, SSM),决定该块的类型:平滑还是纹理。
对于平滑块,我们通过RMB方法计算块效应指数。
对于纹理块,我们通过本文的方法计算模糊效应指数。作者还加入了显著性图。
两个得分通过池化,得到最终得分。
博主更关注块效应的检测,因此跑去看块效应质量评估论文啦。
Paper | No-reference Quality Assessment of Deblocked Images的更多相关文章
- Paper | Quality assessment of deblocked images
目录 1. 故事 2. 失真变化 3. 方法(PSNR-B) 4. 实验 这篇文章提出了一个PSNR-B指标,旨在衡量 压缩图像的块效应强度 或 去块效应后的残留块效应强度(比较去块效应算法的优劣). ...
- Paper | Blind Quality Assessment Based on Pseudo-Reference Image
目录 1. 技术细节 1.1 失真识别 1.2 得到对应的PRI并评估质量 块效应 模糊和噪声 1.3 扩展为通用的质量评价指标--BPRI 归一化3种质量评分 判断失真类型 加权求和 2. 总结 这 ...
- [论文笔记] Methodologies for Data Quality Assessment and Improvement (ACM Comput.Surv, 2009) (1)
Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. 2009. Methodologies for data ...
- Paper | BLIND QUALITY ASSESSMENT OF COMPRESSED IMAGES VIA PSEUDO STRUCTURAL SIMILARITY
目录 1. 技术细节 1.1 得到MDI 1.2 判别伪结构,计算伪结构相似性 2. 实验 动机:作者认为,基于块的压缩会产生一种伪结构(pseudo structures),并且不同程度压缩产生的伪 ...
- [论文笔记] Methodologies for Data Quality Assessment and Improvement (ACM Comput.Surv, 2009) (2)
本篇博文主要对DMQ(S3.7)的分类进行了研读. 1. 这个章节提出了一种DQM的分类法(如下图) 由上图可见,该分类法的分类标准是对assessment & improvement阶段的支 ...
- Quality assessment and quality control of NGS data
http://www.molecularevolution.org/resources/activities/QC_of_NGS_data_activity_new table of contents ...
- Paper | Predicting the Quality of Images Compressed After Distortion in Two Steps
目录 1. 问题本质剖析 2. 方法细节 图像质量评估大佬AC Bovik的论文,发表在2019 TIP上. 考虑的问题:对于有参考图像质量评估(R-IQA)任务,参考图像有时是有损的.这会导致评估的 ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- ITU-T G.1080 IPTV的体验质量(QoE)要求 (Quality of experience requirements for IPTV services)
IPTV的服务质量(QoE)要求 Quality of experience requirements for IPTV services Summary This Recommendation de ...
随机推荐
- iOpenWorskSDK下载和答疑贴
1 iOpenWorksSDK对VS2013-VS2017的支持插件 https://files.cnblogs.com/files/baihmpgy/iOpenWorksSDK.vsix.zip 2 ...
- react的this.setState中的坑
react的this.setState中的有两个. 1.this.setState异步的,不能用同步的思维讨论问题 2.在进行组件通讯的回调的时候,this指向子组件,没有指向父亲这,怎么办呢.在 c ...
- js forEach参数详解,forEach与for循环区别,forEach中如何删除数组元素
壹 ❀ 引 在JS开发工作中,遍历数组的操作可谓十分常见了,那么像for循环,forEach此类方法自然也不会陌生,我个人也觉得forEach不值得写一篇博客记录,直到我遇到了一个有趣的问题,我们来 ...
- manage.py相关命令
python manage.py makemigrations <app_name> 在对应app下的migrations目录下,生成XXXX_initial.py文件,该XXXX_ini ...
- SqlServer ----- 拷贝数据表
两种方式,第一种方式只是把表中的字段进行拷贝,第二种把表中的关联关系,主键自增长全部拷贝. 1.把表中的关联关系,主键自增长全部拷贝. 选择需要拷贝的表,点击编辑器窗口,会看到这个表的sql 语句,主 ...
- 数据库——数据库设计 E-R图向关系模型的转换
1.将下列物资管理E-R图转换为关系模式: 转换原则 ⒈ 一个实体型转换为一个关系模式.关系的属性:实体型的属性关系的码:实体型的码 ⒉ 一个m:n联系转换为一个关系模式(初步,以后可能调整). ...
- ES6语法:let和const
ES6新增加了两个重要的JavaScript关键字:let和const 一.let关键字 let声明的变量只在let命令所在的代码块内有效. 1.基本语法 let a='123' 2.let和var的 ...
- C#上手练习5(GOTO语句)
C# goto 语句用于直接在一个程序中转到程序中的标签指定的位置,标签实际上由标识符加上冒号构成 语法形式如下. goto Labell; 语句块 1;Labell 语句块 2; 如果要 ...
- StreamWriter StreamReader
private void WriteLoginJsonData(object jsonData) { using (FileStream writerFileStream = new FileStre ...
- vue-路由-显示名称
显示名称 方式1: <div id="app"> <!-- 分析: --> <!-- 1. 我们要监听到 文本框数据的改变,这样才能知道 什么时候去拼 ...