Paper | No-reference Quality Assessment of Deblocked Images
目录
发表在2016年Neurocomputing。
摘要
JPEG is the most commonly used image compression standard. In practice, JPEG images are easily subject to blocking artifacts at low bit rates. To reduce the blocking artifacts, many deblocking algorithms have been proposed. However, they also introduce certain degree of blur, so the deblocked images contain multiple distortions. Unfortunately, the current quality metrics are not designed for multiply distorted images, so they are limited in evaluating the quality of deblocked images. To solve the problem, this paper presents a no-reference (NR) quality metric for deblocked images. A DeBlocked Image Database (DBID) is first built with subjective Mean Opinion Score (MOS) as ground truth. Then a NR DeBlocked Image Quality (DBIQ) metric is proposed by simultaneously evaluating blocking artifacts in smooth regions and blur in textured regions. Experimental results conducted on the DBID database demonstrate that the proposed metric is effective in evaluating the quality of deblocked images, and it significantly outperforms the existing metrics. As an application, the proposed metric is further used for automatic parameter selection in image deblocking algorithms.
结论
Image deblocking has been extensively researched for removing blocking artifacts in JPEG images. However, the quality evaluation of such deblocked images is still an open problem. In this paper, we have presented a no-reference quality model for evaluating the quality of deblocked images. Blocking artifacts in smooth regions and blur effects in textured regions are considered in the proposed model. It is a moment-based metric, where the Tchebichef moments are used to achieve: (1) block classification, (2) blocking artifact evaluation, and (3) blur evaluation. We have also built a deblocked image database DBID to compare the performances of image deblocking algorithms, and also to verify the performance of the proposed method. The experimental results have demonstrated that the proposed method is effective in evaluating the quality of deblocked images, and it significantly outperforms the state-of-the-art blocking artifact metrics, blur metrics and general-purpose NR image quality metrics. As an application of the proposed model, we have also used DBIQ for automatic parameter tuning in image deblocking algorithm, producing very promising results.
In this work, the proposed quality model is based on the Tchebichef moments of gray-scale images. However, color also affects the quality of deblocked images, so the performance of the proposed metric could be further enhanced by incorporating color information. A straightforward way to improve DBIQ is to use quaternion-type moments [51]. Furthermore, the presented work mainly focus on deblocked JPEG images. More general deblocking scenarios, e.g., deblocking loop filter in H.264/AVC, will be investigated in future work.
要点
我们讨论JPEG压缩图像的块效应。
许多去块效应方法都会引入模糊,导致图像中存在多重失真。然而,现存质量指标都只局限于单一失真(比如块效应),没有考虑模糊等其他失真。
为了解决这一问题,本文针对去块效应的图像(deblocked images),提出了一种无参考质量评价指标:NR DeBlocked Image Quality(DBIQ)。
方法核心:同时评估平滑区域的块效应,以及纹理区域的模糊程度。
具体而言,作者采用了切比雪夫矩(Tchebichef moments),同时实现了块分类、块效应评估和模糊程度评估。
本文还有建库等贡献。作者将预测的指标用于去块效应算法,发现实验结果有所提升,证明了该指标的有效性。
局限:只考虑了灰度图像;只考虑了JPEG图像。
故事背景
作者观察了借助去块效应算法[14]得到的图像,发现:去块效应图像的平滑区域容易遭受(残留)块效应影响,而纹理区域容易变模糊。
The deblocked images are contaminated by both blocking artifacts and blur. Blocking artifacts mainly affect the quality of smooth regions and blur mainly affects the quality of textured regions.
基于此观察,作者提出用离散切比雪夫矩,同时评估块效应和模糊。
本文方法(DBIQ)
DBIQ由两部分组成:
块效应指标RMB[26],是当时最好的检测块效应指标;
基于矩的模糊检测模块。
整体框图:

流程大致如下:
- 首先,deblocked图像被不重叠地分为\(8 \times 8\)的目标块。\(8 \times 8\)应该是JPEG编码块的尺寸。
对于每一个目标块,计算切比雪夫矩。根据非直流分量的平方和(the sum of squared non-DC moment, SSM),决定该块的类型:平滑还是纹理。
对于平滑块,我们通过RMB方法计算块效应指数。
对于纹理块,我们通过本文的方法计算模糊效应指数。作者还加入了显著性图。
两个得分通过池化,得到最终得分。
博主更关注块效应的检测,因此跑去看块效应质量评估论文啦。
Paper | No-reference Quality Assessment of Deblocked Images的更多相关文章
- Paper | Quality assessment of deblocked images
目录 1. 故事 2. 失真变化 3. 方法(PSNR-B) 4. 实验 这篇文章提出了一个PSNR-B指标,旨在衡量 压缩图像的块效应强度 或 去块效应后的残留块效应强度(比较去块效应算法的优劣). ...
- Paper | Blind Quality Assessment Based on Pseudo-Reference Image
目录 1. 技术细节 1.1 失真识别 1.2 得到对应的PRI并评估质量 块效应 模糊和噪声 1.3 扩展为通用的质量评价指标--BPRI 归一化3种质量评分 判断失真类型 加权求和 2. 总结 这 ...
- [论文笔记] Methodologies for Data Quality Assessment and Improvement (ACM Comput.Surv, 2009) (1)
Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. 2009. Methodologies for data ...
- Paper | BLIND QUALITY ASSESSMENT OF COMPRESSED IMAGES VIA PSEUDO STRUCTURAL SIMILARITY
目录 1. 技术细节 1.1 得到MDI 1.2 判别伪结构,计算伪结构相似性 2. 实验 动机:作者认为,基于块的压缩会产生一种伪结构(pseudo structures),并且不同程度压缩产生的伪 ...
- [论文笔记] Methodologies for Data Quality Assessment and Improvement (ACM Comput.Surv, 2009) (2)
本篇博文主要对DMQ(S3.7)的分类进行了研读. 1. 这个章节提出了一种DQM的分类法(如下图) 由上图可见,该分类法的分类标准是对assessment & improvement阶段的支 ...
- Quality assessment and quality control of NGS data
http://www.molecularevolution.org/resources/activities/QC_of_NGS_data_activity_new table of contents ...
- Paper | Predicting the Quality of Images Compressed After Distortion in Two Steps
目录 1. 问题本质剖析 2. 方法细节 图像质量评估大佬AC Bovik的论文,发表在2019 TIP上. 考虑的问题:对于有参考图像质量评估(R-IQA)任务,参考图像有时是有损的.这会导致评估的 ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- ITU-T G.1080 IPTV的体验质量(QoE)要求 (Quality of experience requirements for IPTV services)
IPTV的服务质量(QoE)要求 Quality of experience requirements for IPTV services Summary This Recommendation de ...
随机推荐
- 详解 Redis 应用场景及原理
本文转自https://blog.csdn.net/niucsd/article/details/50966733,描述了redis实现原理和应用场景,篇幅较长,有意学习redis的同学可耐心阅读. ...
- 服务器jvm参数配置
Eclipse崩溃,错误提示: MyEclipse has detected that less than 5% of the 64MB of Perm Gen (Non-heap memory) s ...
- Python连载47-json文件、正则表达式初步
一.在线工具 1.https://www.sojson.com/ 2.http://www.w3cshool.com.cn/json/ 3.http://www.runoob.com/json/jso ...
- Selenium+java - 关于富文本编辑器的处理
什么是富文本编辑器? 富文本编辑器,Rich Text Editor, 简称 RTE, 是一种可内嵌于浏览器,所见即所得的文本编辑器.具体长啥样,如下图: 通过自动化操作富文本编辑器 模拟场景:在富文 ...
- 细数使用View UI(iView)开发中遇到的坑
一.前言 View UI,即原先的 iView,是一套基于 Vue.js 的开源 UI 组件库,主要服务于 PC 界面的中后台产品. 官网地址:https://www.iviewui.com/docs ...
- 微信小程序反编译
看到一个有意思的小程序,想了解是如何实现的,于是找了反编译方法. 安装adb驱动 百度安装adb驱动, 设计设置开发者模式,连接电脑. -> % adb devices List of devi ...
- php捕获Fatal error错误与异常处理
php中的错误和异常是两个不同的概念. 错误:是因为脚本的问题,比如少写了分号,调用未定义的函数,除0,等一些编译语法错误. 异常:是因为业务逻辑和流程,不符合预期情况,比如验证请求参数,不通过就用 ...
- 前端之json,ajax和jsonp
json json是 JavaScript Object Notation 的首字母缩写,单词的意思是javascript对象表示法,这里说的json指的是类似于javascript对象的一种数据格式 ...
- EF中获取当前上下文的表名
EF在处理并发上并不是很好,很多时候我们需要手动写sql操作数据库.但是在基类中我们如何获取当前服务仓储操作的表呢? 使用正则是其中一种解决办法 Repository.Table是一条查询语句,通过t ...
- python中反转列表的三种方式
1.内建函数reversed() li =[1, 2, 3, 4, 5, 6] a = list(reversed(li)) print (a) 注意:reversed()函数返回的是一个迭代器,而不 ...