100天搞定机器学习|day37 无公式理解反向传播算法之精髓


本篇为100天搞定机器学习之第37天,亦为3Blue1Brown《深度学习之反向传播算法》学习笔记。
上集提到我们要找到特定权重和偏置,从而使代价函数最小化,我们需要求得代价函数的负梯度,它告诉我们如何改变连线上的权重偏置,才能让代价下降的最快。反向传播算法是用来求这个复杂到爆的梯度的。
上一集中提到一点,13000维的梯度向量是难以想象的。换个思路,梯度向量每一项的大小,是在说代价函数对每个参数有多敏感。如下图,我们可以这样里理解,第一个权重对代价函数的影响是是第二个的32倍。
我们先不要管反向传播算法这一堆公式,当我们真正理解了这算法,这里的每一步就会无比清晰了。
我们来考虑一个还没有被训练好的网络。我们并不能直接改动这些激活值,只能改变权重和偏置值。但记住,我们想要输出层出现怎样的变动,还是有用的。我们希望图像的最后分类结果是2,我们期望第3个输出值变大,其余输出值变小,并且变动的大小应该与现在值和目标值之间的差成正比。举个例子,增大数字2神经元的激活值,就应该比减少数字8神经元的激活值来得重要,因为后者已经很接近它的目标了。
进一步,就来关注数字2这个神经元,想让它的激活值变大,而这个激活值是把前一层所有激活值的加权和加上偏置值。要增加激活值,我们有3条路可以走,一增加偏置,二增加权重,或者三改变上一层的激活值。先来看如何调整权重,各个权重它们的影响力各不相同,连接前一层最亮的神经元的权重,影响力也最大,因为这些权重与大的激活值相乘。增大这几个权重,对最终代价函数造成的影响,就比增大连接黯淡神经元的权重所造成的影响,要大上好多倍。
请记住,说到梯度下降的时候,我们并不只看每个参数是增大还是变小,我们还看改变哪个参数的性价比最大。
第三个可以增加神经元激活值的方法是改变前一层的激活值,如果所有正权重链接的神经元更亮,所有负权重链接的神经元更暗的话,那么数字2的神经元就会更强烈的激发。我们也要依据对应权重的大小,对激活值做成比例的改变,我们并不能直接改变激活值,仅对最后一层来说,记住我们期待的变化也是有帮助的。
不过别忘了,从全局上看,只只不过是数字2的神经元所期待的变化,我们还需要最后一层其余的每个输出神经元,对于如何改变倒数第二层都有各自的想法。
我们会把数字2神经元的期待,和别的输出神经元的期待全部加起来,作为如何改变倒数第二层的指示。这些期待变化不仅是对应的权重的倍数,也是每个神经元激活值改变量的倍数。
这其实就是在实现反向传播的理念了,我们把所有期待的改变加起来,得到一串对倒数第二层改动的变化量,然后重复这个过程,改变倒数第二层神经元激活值的相关参数,一直循环到第一层。我们对其他的训练样本,同样的过一遍反向传播,记录下每个样本想怎样修改权重和偏置,最后再去一个平均值。
这里一系列的权重偏置的平均微调大小,不严格地说,就是代价函数的负梯度,至少是其标量的倍数。神奇吧?
如果梯度下降的每一步都用上每一个训练样本计算的话,那么花费的时间就太长了。实际操作中,我们一般这样做:首先把训练样本打乱,然后分成很多组minibatch,每个minibatch就当包含了100个训练样本好了。然后你算出这个minibatch下降的一步,这不是代价函数真正的梯度,然而每个minibatch会给一个不错的近似,计算量会减轻不少。

可以这样比喻:沿代价函数表面下山,minibatch方法就像醉汉漫无目的的溜下山,但是速度很快。而之前的方法就像细致入微的人,事先准确的算好了下山的方向,然后谨小慎微的慢慢走。
这就是随机梯度下降

总结一下:反向传播算法算的是单个训练样本怎样改变权重和偏置,不仅说每个参数应该变大还是变小,还包括这些变化的比例是多大才能最快地降低cost。真正的梯度下降,对好几万个训练范例都这样操作,然后对这些变化取平均值,这样计算太慢了,我们要把所有样本分到各个minibatch中,计算每个minibatch梯度,调整参数,不断循环,最终收敛到cost function的局部最小值上。理解是一回事,如何表示出来又是另一回事,下一期,我们一起将反向传播算法用微积分的形式推导出来,敬请期待!

100天搞定机器学习|day37 无公式理解反向传播算法之精髓的更多相关文章
- 100天搞定机器学习|day38 反向传播算法推导
往期回顾 100天搞定机器学习|(Day1-36) 100天搞定机器学习|Day37无公式理解反向传播算法之精髓 上集我们学习了反向传播算法的原理,今天我们深入讲解其中的微积分理论,展示在机器学习中, ...
- 100天搞定机器学习|Day16 通过内核技巧实现SVM
前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...
- 100天搞定机器学习|Day17-18 神奇的逻辑回归
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
- 100天搞定机器学习|Day3多元线性回归
前情回顾 [第二天100天搞定机器学习|Day2简单线性回归分析][1],我们学习了简单线性回归分析,这个模型非常简单,很容易理解.实现方式是sklearn中的LinearRegression,我们也 ...
- 100天搞定机器学习|Day7 K-NN
最近事情无比之多,换了工作.组队参加了一个比赛.和朋友搞了一些小项目,公号荒废许久.坚持是多么重要,又是多么艰难,目前事情都告一段落,我们继续100天搞定机器学习系列.想要继续做这个是因为,一方面在具 ...
- 100天搞定机器学习|Day11 实现KNN
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...
- 100天搞定机器学习|Day8 逻辑回归的数学原理
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...
- 100天搞定机器学习|Day9-12 支持向量机
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...
- 100天搞定机器学习|Day19-20 加州理工学院公开课:机器学习与数据挖掘
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...
随机推荐
- 【拓扑排序】排队-C++
描述 今天,学校老师让同学们排成一队,准备带大家出去玩,一共有 n 名同学,排队的时候同学们向老师提了 m 条要求,每一条要求是说同学 x 一定要排在同学 y 之前,老师现在想找到一种排队方式可以满足 ...
- java开发---关于ORA00604和ORA12705
MyEclipse和oracle连接中出现的一个问题: 在使用工具连接orcale数据库时报了这两个异常 ORA-00604和ORA12705 ; 查找问题原因: 大概猜测是与字符集有关系 , 确认 ...
- JVM调优之探索CMS和G1的物理内存归还机制
前言: 公司有一个资产统计系统,使用频率很低,但是要求在使用时查询速度快,因此想到做一些缓存放在内存中,在长时间没有使用,持久化到磁盘中,并对垃圾进行回收,归还物理内存给操作系统,从而节省宝贵资源给其 ...
- sql nvarchar类型和varchar类型存储中文字符长度
今天遇到了,随手记录一下. sql server 存储数据里面 NVARCHAR 记录中文的时候是 一个中文对应一个字符串长度,记录英文也是一个字母一个长度 标点符号也是一样. ...
- 并发,并行,线程,进程,GIL锁
1.并发和并行 并发: 同时做某些事,但是强调同一时段做多件事 如:同一路口,发生了车辆要同时通过路面的时间. 并行: 互不干扰的在同一时刻做多件事 如:同一时刻,同时有多辆车在多条车道上跑,即同时发 ...
- halcon视频教程如何学习?怎么样才能踏入机器视觉这个行业?
本人是工作八年的视觉工程师,主要从事Halcon和Visionpro视觉开发,谈谈个人对视觉学习看法: 1.HALCON是德国MVtec公司开发的一套完善的标准的机器视觉算法包,它节约了产品成本,缩短 ...
- IBM RAD中集成Websphere启动后无法debug解决办法
问题描述: IBM Rational Application Developer for WebSphere软件在启动WebSphere的时候无法以debug模式启动,debug启动后显示为start ...
- Win10系统下安装labelme,json文件批量转化
一.安装环境:windows10,anaconda3,python3.6 由于框架maskrcnn需要json数据集,在没安装labelme环境和跑深度学习之前,我安装的是anacon ...
- java使用栈计算后缀表达式
package com.nps.base.xue.DataStructure.stack.utils; import java.util.Scanner; import java.util.Stack ...
- Java经典编程题
[程序1] 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? //这是一个菲波拉契数列问题p ...