背景

  用ConvNet方法解决图像分类、检测问题成为热潮,但这些方法都需要先把图片resize到固定的w*h,再丢进网络里,图片经过resize可能会丢失一些信息。论文作者发明了SPP pooling(空间金字塔池化)层,让网络可以接受任意size的输入。

方法

  首先思考一个问题,为什么ConvNet需要一个固定size的图片作为输入,我们知道,Conv层只需要channel固定(彩色图片3,灰度图1),但可以接受任意w*h的输入,当然输出的w*h也会跟着变化;然而,后面的FC层却需要固定长度的vector作为输入,图片size变化->conv层输出的size变化->FC层输入的vector长度变化,这就产生了错误。

  怎么解决这个问题呢?作者给出的方法是在最后一层Conv层后面加上一个SPP pooling层,SPP pooling层可以将接收到的不同size的输入转换成为固定的输出,保证FC层的输入长度固定。

  

  如图,SPP  pooling层的原理很简单,例子如下:给定一个w*h的特征图,把其分别分成4*4、2*2、1*1的bin,在每个bin上面作pooling操作(文中使用的是max pooling),最后能得到16*256-d(256-d是最后一个conv层的输出通道数),4*256-d、1*256-d的feature vector,最后连接在一起,得到的就是21*256-d的feature vector。

  可以看到,不管一开始的w和h取值多少,最后都能得到固定长度的feature vector作为FC层的输入,这样,ConvNet就能接受不同size的图片作为输入了。

总结

  论文作者通过在FC层前面加上一个SPP pooling层,有效解决了ConvNet必须接受固定size的图片。

论文解读2——Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition的更多相关文章

  1. 深度学习论文翻译解析(九):Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神 ...

  2. SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...

  3. 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)

    Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...

  4. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...

  5. 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)

    论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...

  6. SPP Net(Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)论文理解

    论文地址:https://arxiv.org/pdf/1406.4729.pdf 论文翻译请移步:http://www.dengfanxin.cn/?p=403 一.背景: 传统的CNN要求输入图像尺 ...

  7. SPP NET (Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)

    1. https://www.cnblogs.com/gongxijun/p/7172134.html (SPP 原理) 2.https://www.cnblogs.com/chaofn/p/9305 ...

  8. 目标检测(二)SSPnet--Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognotion

    作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 以前的CNNs都要求输入图像尺寸固定,这种硬性要求也许会降低识别任意尺寸图像的准确度. ...

  9. 论文笔记:(2019CVPR)PointConv: Deep Convolutional Networks on 3D Point Clouds

    目录 摘要 一.前言 1.1直接获取3D数据的传感器 1.2为什么用3D数据 1.3目前遇到的困难 1.4现有的解决方法及存在的问题 二.本文idea 2.1 idea来源 2.2 初始思路 2.3 ...

随机推荐

  1. windows登陆suse虚拟机

    vmware我还是比较偏向7.1.4版本,其他版本装在win7上似乎有点问题. windows平台下,使用vmware + opensuse的网络配置过程如下: 装完vm后,会在本地连接新创建两个新连 ...

  2. Java开发IDEA插件推荐

    IDEA插件推荐 Alibaba Java Coding Guidelines MyBatisCodeHelper-Pro Lombok GsonFormat AceJump Statistic Tr ...

  3. 学习2:总结# 1.while # 2.字符串格式化 # 3.运算符 # 4.编码初始

    目录 1.while循环 -- 死循环 2.字符串格式化: 3.运算符 4.编码 1.while循环 -- 死循环 while 条件: 循环体 打断死循环: break -- 终止当前循环 改变条件 ...

  4. SSRS报表-级联筛选参数刷新后不能默认全选 -问题解决方案

    好久没有写博客了,最近更新完善修复了SSRS报表的一些问题,和大家分享. 问题描述: 报表中,区域->专区->省份->地级市 此四个筛选参数是联动的,在DataSet中前一父级参数作 ...

  5. Ubuntu安装Sublime Text 3

    终端命令行安装: Install the GPG key: wget -qO - https://download.sublimetext.com/sublimehq-pub.gpg | sudo a ...

  6. java多线程总结-同步容器与并发容器的对比与介绍

    1 容器集简单介绍 java.util包下面的容器集主要有两种,一种是Collection接口下面的List和Set,一种是Map, 大致结构如下: Collection List LinkedLis ...

  7. 关键字static、final

    final final能修饰类.修饰方法.能修饰属性. 修饰类:该类不能被继承. 修饰方法:该方法不能被重写.所以abstract和final不能同时用 修饰属性/变量:该属性/变量为常量,该值不能再 ...

  8. ViewPager取消切换动画

    /** * Created by apk2sf on 2017/12/2. * email: apk2sf@163.com * QQ:337081267 */ public class NoAnima ...

  9. WGS84坐标与web墨卡托投影坐标转换

    许久没有使用坐标转换,记忆有些模糊了,以后还是会用到,先将WGS84与web墨卡托转换复习一下: 1.84转web墨卡托 //核心公式 平面坐标x = 经度*20037508.34/108 平面坐标y ...

  10. 四、利用SQL Server 2008 R2创建自动备份计划

    (转) 本文主要利用SQL Server 2008 R2自带的"维护计划"创建一个自动备份数据的任务. 首先,启动 Sql Management studio,确保"SQ ...