论文解读2——Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
背景
用ConvNet方法解决图像分类、检测问题成为热潮,但这些方法都需要先把图片resize到固定的w*h,再丢进网络里,图片经过resize可能会丢失一些信息。论文作者发明了SPP pooling(空间金字塔池化)层,让网络可以接受任意size的输入。
方法
首先思考一个问题,为什么ConvNet需要一个固定size的图片作为输入,我们知道,Conv层只需要channel固定(彩色图片3,灰度图1),但可以接受任意w*h的输入,当然输出的w*h也会跟着变化;然而,后面的FC层却需要固定长度的vector作为输入,图片size变化->conv层输出的size变化->FC层输入的vector长度变化,这就产生了错误。
怎么解决这个问题呢?作者给出的方法是在最后一层Conv层后面加上一个SPP pooling层,SPP pooling层可以将接收到的不同size的输入转换成为固定的输出,保证FC层的输入长度固定。
如图,SPP pooling层的原理很简单,例子如下:给定一个w*h的特征图,把其分别分成4*4、2*2、1*1的bin,在每个bin上面作pooling操作(文中使用的是max pooling),最后能得到16*256-d(256-d是最后一个conv层的输出通道数),4*256-d、1*256-d的feature vector,最后连接在一起,得到的就是21*256-d的feature vector。
可以看到,不管一开始的w和h取值多少,最后都能得到固定长度的feature vector作为FC层的输入,这样,ConvNet就能接受不同size的图片作为输入了。
总结
论文作者通过在FC层前面加上一个SPP pooling层,有效解决了ConvNet必须接受固定size的图片。
论文解读2——Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition的更多相关文章
- 深度学习论文翻译解析(九):Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神 ...
- SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...
- 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...
- Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...
- 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)
论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...
- SPP Net(Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)论文理解
论文地址:https://arxiv.org/pdf/1406.4729.pdf 论文翻译请移步:http://www.dengfanxin.cn/?p=403 一.背景: 传统的CNN要求输入图像尺 ...
- SPP NET (Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)
1. https://www.cnblogs.com/gongxijun/p/7172134.html (SPP 原理) 2.https://www.cnblogs.com/chaofn/p/9305 ...
- 目标检测(二)SSPnet--Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognotion
作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 以前的CNNs都要求输入图像尺寸固定,这种硬性要求也许会降低识别任意尺寸图像的准确度. ...
- 论文笔记:(2019CVPR)PointConv: Deep Convolutional Networks on 3D Point Clouds
目录 摘要 一.前言 1.1直接获取3D数据的传感器 1.2为什么用3D数据 1.3目前遇到的困难 1.4现有的解决方法及存在的问题 二.本文idea 2.1 idea来源 2.2 初始思路 2.3 ...
随机推荐
- 在阿里云上搭建Spring Initializr服务器。
参考的博客有: https://blog.csdn.net/chszs/article/details/51713174 https://segmentfault.com/a/119000001137 ...
- 20131207-ADO.NET-第十六天
[1]快捷键 工具箱:ctrl+w+x 首字母定位控件范围 属性:F4 或ctrl+w+p Tab跳转 ,home 与end也有效 [2]连接字符串 string str = "Data S ...
- vim 复制大块内容。 y,p(是单个y,而不是yy)
vim 复制大块内容. y,p(是单个y,而不是yy)
- 个人永久性免费-Excel催化剂功能第93波-地图数据挖宝之两点距离的路径规划
在日常手机端,网页端的向地图发出两点距离的行程规划,相信绝大多数人都有用到过,但毕竟是个体单一行为,若某些时候需要用到批量性的操作,就显得很不现实了,同时,数据只是在应用或网页内,非结构化的数据,也是 ...
- Linux学习之安装jdk
下载jdk for linux jdk for linux oracle download 卸载已有的jdk (1)查询是否安装java软件: rpm -qa|grep java (2)卸载jdk: ...
- 关于C#多线程、易失域、锁的分享
一.多线程 windows系统是一个多线程的操作系统.一个程序至少有一个进程,一个进程至少有一个线程.进程是线程的容器,一个C#客户端程序开始于一个单独的线程,CLR(公共语言运行库)为该进程创建了一 ...
- Python基础之变量,常量,注释,数据类型
由于上学期学了C语言,对于这一块的内容肯定算熟悉,只是注释的方法有些不同,但得还是一步一步的来!没有基础的同学看了这篇随笔也会大有助益的! 什么是变量?所谓变量就是将一些运算的中间结果暂存到内存中,以 ...
- 今天来聊Java ClassLoader
背景 类加载机制作为一个高频的面试题经常会在面试中被问到,前几天一个电话面试就问到,之前有了解过,但是没有梳理成自己的体系,所以说的有点凌乱,今天花点时间整理一下,分享给大家同时自己也好好梳理一下,顺 ...
- go mod 无法自动下载依赖包的问题
go 11以后启用了go mod功能,用于管理依赖包. 当执行go mod init生成go.mod文件之后,golang在运行.编译项目的时候,都会检查依赖并下载依赖包. 在启动了go mod之后, ...
- 我是这样一步步理解--主题模型(Topic Model)、LDA
1. LDA模型是什么 LDA可以分为以下5个步骤: 一个函数:gamma函数. 四个分布:二项分布.多项分布.beta分布.Dirichlet分布. 一个概念和一个理念:共轭先验和贝叶斯框架. 两个 ...