论文解读2——Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
背景
用ConvNet方法解决图像分类、检测问题成为热潮,但这些方法都需要先把图片resize到固定的w*h,再丢进网络里,图片经过resize可能会丢失一些信息。论文作者发明了SPP pooling(空间金字塔池化)层,让网络可以接受任意size的输入。
方法
首先思考一个问题,为什么ConvNet需要一个固定size的图片作为输入,我们知道,Conv层只需要channel固定(彩色图片3,灰度图1),但可以接受任意w*h的输入,当然输出的w*h也会跟着变化;然而,后面的FC层却需要固定长度的vector作为输入,图片size变化->conv层输出的size变化->FC层输入的vector长度变化,这就产生了错误。
怎么解决这个问题呢?作者给出的方法是在最后一层Conv层后面加上一个SPP pooling层,SPP pooling层可以将接收到的不同size的输入转换成为固定的输出,保证FC层的输入长度固定。
如图,SPP pooling层的原理很简单,例子如下:给定一个w*h的特征图,把其分别分成4*4、2*2、1*1的bin,在每个bin上面作pooling操作(文中使用的是max pooling),最后能得到16*256-d(256-d是最后一个conv层的输出通道数),4*256-d、1*256-d的feature vector,最后连接在一起,得到的就是21*256-d的feature vector。
可以看到,不管一开始的w和h取值多少,最后都能得到固定长度的feature vector作为FC层的输入,这样,ConvNet就能接受不同size的图片作为输入了。
总结
论文作者通过在FC层前面加上一个SPP pooling层,有效解决了ConvNet必须接受固定size的图片。
论文解读2——Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition的更多相关文章
- 深度学习论文翻译解析(九):Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神 ...
- SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...
- 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...
- Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...
- 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)
论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...
- SPP Net(Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)论文理解
论文地址:https://arxiv.org/pdf/1406.4729.pdf 论文翻译请移步:http://www.dengfanxin.cn/?p=403 一.背景: 传统的CNN要求输入图像尺 ...
- SPP NET (Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)
1. https://www.cnblogs.com/gongxijun/p/7172134.html (SPP 原理) 2.https://www.cnblogs.com/chaofn/p/9305 ...
- 目标检测(二)SSPnet--Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognotion
作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 以前的CNNs都要求输入图像尺寸固定,这种硬性要求也许会降低识别任意尺寸图像的准确度. ...
- 论文笔记:(2019CVPR)PointConv: Deep Convolutional Networks on 3D Point Clouds
目录 摘要 一.前言 1.1直接获取3D数据的传感器 1.2为什么用3D数据 1.3目前遇到的困难 1.4现有的解决方法及存在的问题 二.本文idea 2.1 idea来源 2.2 初始思路 2.3 ...
随机推荐
- 两个域名同时访问一个tomcat下的两个项目
两个域名,分别映射一个TOMCAT底下,两个应用. 分三个步骤完成. 1.域名与IP的解析,此步骤在万网等机构完成. 2.APACHE的httpd.conf的配置 <VirtualHost *: ...
- [ZJOI2008]杀蚂蚁antbuster 题解
一个题目的可读版本:https://www.zybuluo.com/Jerusalem/note/221811 这两天做的又一道大模拟题,感觉这玩意有毒,会上瘾啊…… 比起猪国杀这道题真心不知道高到哪 ...
- JAVA BIO,NIO,Reactor模式总结
传统同步阻塞I/O(BIO) 在NIO之前编写服务器使用的是同步阻塞I/O(Blocking I/O).下面是一个典型的线程池客服端服务器示例代码,这段代码在连接数急剧上升的情况下,这个服务器代码就会 ...
- UVA-10608 Friends 【并查集】
There is a town with N citizens. It is known that some pairs of people are friends. According to the ...
- spring全局异常抓取validation校验信息
@ControllerAdvicepublic class GlobalExceptionHandler { @ExceptionHandler({Exception.class}) @Respons ...
- Masstransit的应用服务总线
Masstransit 是一个非常优秀的基于消息进行通信的分布式应用程序框架,详情参考官网. 在介绍AA.ServiceBus之前,先介绍下几个概念. 分布式 分布式系统如何定义?这里引用一下Dist ...
- linux初学者-MariaDB图形管理篇
linux初学者-MariaDB图形管理篇 MariaDB不仅有文本管理方式,也有借助工具的图形管理方式.其图形管理的工具是"phpmyadmin".这个软件可以在"p ...
- java - 数组与String的length方法问题
java数组没有length()方法,java数组有length属性: String有length()方法.
- grafana 4 升级到 grafana 5错误处理
遇到2个错误: 1. UNIQUE KEY 问题 INFO[07-16|15:34:36] Executing migration logger=migrator id="Remove un ...
- ubuntu防火墙规则之ufw
前言 因公司项目的需求,需要对客户端机器简便使用防火墙的功能,所以可在页面进行简便设置防护墙规则,当然,这个功能需求放到我手上我才有机会学到.因为客户端机器都是ubuntu的,所以当然用了ubuntu ...