实战限流(guava的RateLimiter)
关于限流
常用的限流算法有漏桶算法和令牌桶算法,guava的RateLimiter使用的是令牌桶算法,也就是以固定的频率向桶中放入令牌,例如一秒钟10枚令牌,实际业务在每次响应请求之前都从桶中获取令牌,只有取到令牌的请求才会被成功响应,获取的方式有两种:阻塞等待令牌或者取不到立即返回失败,下图来自网上:

本次实战,我们用的是guava的RateLimiter,场景是spring mvc在处理请求时候,从桶中申请令牌,申请到了就成功响应,申请不到时直接返回失败;
源码下载
对于的源码可以在我的git下载,地址是:https://github.com/zq2599/blog_demos ,里面有多个工程,本次实战的工程为guavalimitdemo,如下图红框所示:

实战开发
创建一个maven工程,在pom中把guava的依赖添加进来:
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>18.0</version>
</dependency>
把限流服务封装到一个类中AccessLimitService,提供tryAcquire()方法,用来尝试获取令牌,返回true表示获取到,如下所示:
@Service
public class AccessLimitService {
//每秒只发出5个令牌
RateLimiter rateLimiter = RateLimiter.create(5.0);
/**
* 尝试获取令牌
* @return
*/
public boolean tryAcquire(){
return rateLimiter.tryAcquire();
}
}
调用方是个普通的controller,每次收到请求的时候都尝试去获取令牌,获取成功和失败打印不同的信息,如下:
@Controller
public class HelloController {
private static SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
@Autowired
private AccessLimitService accessLimitService;
@RequestMapping("/access")
@ResponseBody
public String access(){
//尝试获取令牌
if(accessLimitService.tryAcquire()){
//模拟业务执行500毫秒
try {
Thread.sleep(500);
}catch (InterruptedException e){
e.printStackTrace();
}
return "aceess success [" + sdf.format(new Date()) + "]";
}else{
return "aceess limit [" + sdf.format(new Date()) + "]";
}
}
}
以上就是服务端的代码了,打包部署在tomcat上即可,接下来我们写一个类,十个线程并发访问上面写的controller:
public class AccessClient {
ExecutorService fixedThreadPool = Executors.newFixedThreadPool(10);
/**
* get请求
* @param realUrl
* @return
*/
public static String sendGet(URL realUrl) {
String result = "";
BufferedReader in = null;
try {
// 打开和URL之间的连接
URLConnection connection = realUrl.openConnection();
// 设置通用的请求属性
connection.setRequestProperty("accept", "*/*");
connection.setRequestProperty("connection", "Keep-Alive");
connection.setRequestProperty("user-agent",
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;SV1)");
// 建立实际的连接
connection.connect();
// 定义 BufferedReader输入流来读取URL的响应
in = new BufferedReader(new InputStreamReader(
connection.getInputStream()));
String line;
while ((line = in.readLine()) != null) {
result += line;
}
} catch (Exception e) {
System.out.println("发送GET请求出现异常!" + e);
e.printStackTrace();
}
// 使用finally块来关闭输入流
finally {
try {
if (in != null) {
in.close();
}
} catch (Exception e2) {
e2.printStackTrace();
}
}
return result;
}
public void access() throws Exception{
final URL url = new URL("http://localhost:8080/guavalimitdemo/access");
for(int i=0;i<10;i++) {
fixedThreadPool.submit(new Runnable() {
public void run() {
System.out.println(sendGet(url));
}
});
}
fixedThreadPool.shutdown();
fixedThreadPool.awaitTermination(Long.MAX_VALUE, TimeUnit.SECONDS);
}
public static void main(String[] args) throws Exception{
AccessClient accessClient = new AccessClient();
accessClient.access();
}
}
直接执行AccessClient的main方法,可以看到结果如下:

部分请求由于获取的令牌可以成功执行,其余请求没有拿到令牌,我们可以根据实际业务来做区分处理。还有一点要注意,我们通过RateLimiter.create(5.0)配置的是每一秒5枚令牌,但是限流的时候发出的是6枚,改用其他值验证,也是实际的比配置的大1。
以上就是快速实现限流的实战过程,此处仅是单进程服务的限流,而实际的分布式服务中会考虑更多因素,会复杂很多。
欢迎关注我的公众号:程序员欣宸

实战限流(guava的RateLimiter)的更多相关文章
- 限流 - Guava RateLimiter
2019独角兽企业重金招聘Python工程师标准>>> 限流 限流的目的是通过对并发访问/请求进行限速或者一个时间窗口内的的请求进行限速来保护系统,一旦并发访问/请求达到限制速率或者 ...
- coding++:高并发解决方案限流技术-使用RateLimiter实现令牌桶限流-Demo
RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率. 通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位时 ...
- 高并发解决方案限流技术-----使用RateLimiter实现令牌桶限流
1,RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率.通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位 ...
- SpringBoot 2.0 + 阿里巴巴 Sentinel 动态限流实战
前言 在从0到1构建分布式秒杀系统和打造十万博文系统中,限流是不可缺少的一个环节,在系统能承受的范围内既能减少资源开销又能防御恶意攻击. 在前面的文章中,我们使用了开源工具包 Guava 提供的限流工 ...
- RateLimit--使用guava来做接口限流
转:https://blog.csdn.net/jiesa/article/details/50412027 一.问题描述 某天A君突然发现自己的接口请求量突然涨到之前的10倍,没多久该接口几乎不 ...
- coding++:RateLimiter 限流算法之漏桶算法、令牌桶算法--简介
RateLimiter是Guava的concurrent包下的一个用于限制访问频率的类 <dependency> <groupId>com.google.guava</g ...
- 基于kubernetes的分布式限流
做为一个数据上报系统,随着接入量越来越大,由于 API 接口无法控制调用方的行为,因此当遇到瞬时请求量激增时,会导致接口占用过多服务器资源,使得其他请求响应速度降低或是超时,更有甚者可能导致服务器宕机 ...
- 高并发之API接口限流
在开发高并发系统时有三把利器用来保护系统:缓存.降级和限流 缓存 缓存的目的是提升系统访问速度和增大系统处理容量 降级 降级是当服务出现问题或者影响到核心流程时,需要暂时屏蔽掉,待高峰或者问题解决后再 ...
- Spring Cloud限流详解
转自:https://blog.csdn.net/tracy38/article/details/78685707 在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Cloud ...
随机推荐
- WIN10家庭版桌面右键单击显示设置出现ms-settings:display或ms-settings:personalization-background解决办法[原创]
最近,笔者的笔记本卸载oracle数据库,注册表里面删除了不少相关信息,没想到担心的事情还是来了!桌面右键单击显示设置出现ms-settings:display或ms-settings:persona ...
- 使用Tesseract-OCR 做验证码识别浅析
使用工具jTessBoxEditor-0.7(这个是在java平台下开发的,所以 它只支持java平台 ,在使用前应该先配置好java环境) tesseract 程序集(因为该程序集是在.net 2. ...
- 如何用Python实现敏感词的过滤
题目要求如下: 从文件解析敏感词,从终端获取用户输入.根据敏感词对用户输入进行过滤.这里过滤需要考虑不止一个过滤词:即将读取的所有过滤词,放进一个列表,用屏蔽词检索用户输入,如果有屏蔽词,则将其替换为 ...
- Sqlserver 存储过程中使用事务
ALTER PROCEDURE [dbo].[Purchase_Create]@Docid varchar(100), ---- 搜索唯一编号@Title varchar(100), - ...
- Spring学习之旅(十五)--SpringBoot
在使用 Spring 的过程中,有时候会出现一些 ClassNotFoundException 异常,这是因为 JAR 依赖之间的版本不匹配所导致的.而 Spring Boot 就能避免绝大多数依赖版 ...
- 使用react定义组件的两种方式
react组件的两种方式:函数定义,类定义 在定义一个组件之前,首先要明白一点:react元素(jsx)是react组件的最基本的组成单位 组件要求: 1,为了和react元素进行区分,组件名字首必须 ...
- 如何使用有道云笔记的Markdown----初级版?
我一般整理笔记用的是用有道云笔记,在这里,Markdown怎么用? 什么是Markdown?Markdown是一种轻量级的「标记语言」,通常为程序员群体所用,目前它已是全球最大的技术分享网站 GitH ...
- CodeForces-768B-Code For 1+DFS类似线段树思想
Code For 1 题意:对于一个n,可以将它分解为n/2,n%2,n/2三个数字,重复上述操作知道虽有值为1或0为止: 求L---R区间数列的和: 思路:首先画着画着可以发现这是一个类似线段数的结 ...
- HDU 5324 Boring Class CDQ分治
题目传送门 题目要求一个3维偏序点的最长子序列,并且字典序最小. 题解: 这种题目出现的次数特别多了.如果不需要保证字典序的话直接cdq就好了. 这里需要维护字典序的话,我们从后往前配对就好了,因为越 ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 hdu 6440 Dream 模拟
Dream Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...