1.概述

最近和一些同学交流的时候反馈说,在面试Kafka时,被问到Kafka组件组成部分、API使用、Consumer和Producer原理及作用等问题都能详细作答。但是,问到一个平时不注意的问题,就是Kafka的幂等性,被卡主了。那么,今天笔者就为大家来剖析一下Kafka的幂等性原理及实现。

2.内容

2.1 Kafka为啥需要幂等性?

Producer在生产发送消息时,难免会重复发送消息。Producer进行retry时会产生重试机制,发生消息重复发送。而引入幂等性后,重复发送只会生成一条有效的消息。Kafka作为分布式消息系统,它的使用场景常见与分布式系统中,比如消息推送系统、业务平台系统(如物流平台、银行结算平台等)。以银行结算平台来说,业务方作为上游把数据上报到银行结算平台,如果一份数据被计算、处理多次,那么产生的影响会很严重。

2.2 影响Kafka幂等性的因素有哪些?

在使用Kafka时,需要确保Exactly-Once语义。分布式系统中,一些不可控因素有很多,比如网络、OOM、FullGC等。在Kafka Broker确认Ack时,出现网络异常、FullGC、OOM等问题时导致Ack超时,Producer会进行重复发送。可能出现的情况如下:

2.3 Kafka的幂等性是如何实现的?

Kafka为了实现幂等性,它在底层设计架构中引入了ProducerID和SequenceNumber。那这两个概念的用途是什么呢?

  • ProducerID:在每个新的Producer初始化时,会被分配一个唯一的ProducerID,这个ProducerID对客户端使用者是不可见的。
  • SequenceNumber:对于每个ProducerID,Producer发送数据的每个Topic和Partition都对应一个从0开始单调递增的SequenceNumber值。

2.3.1 幂等性引入之前的问题?

Kafka在引入幂等性之前,Producer向Broker发送消息,然后Broker将消息追加到消息流中后给Producer返回Ack信号值。实现流程如下:

上图的实现流程是一种理想状态下的消息发送情况,但是实际情况中,会出现各种不确定的因素,比如在Producer在发送给Broker的时候出现网络异常。比如以下这种异常情况的出现:

上图这种情况,当Producer第一次发送消息给Broker时,Broker将消息(x2,y2)追加到了消息流中,但是在返回Ack信号给Producer时失败了(比如网络异常) 。此时,Producer端触发重试机制,将消息(x2,y2)重新发送给Broker,Broker接收到消息后,再次将该消息追加到消息流中,然后成功返回Ack信号给Producer。这样下来,消息流中就被重复追加了两条相同的(x2,y2)的消息。

2.3.2 幂等性引入之后解决了什么问题?

面对这样的问题,Kafka引入了幂等性。那么幂等性是如何解决这类重复发送消息的问题的呢?下面我们可以先来看看流程图:

同样,这是一种理想状态下的发送流程。实际情况下,会有很多不确定的因素,比如Broker在发送Ack信号给Producer时出现网络异常,导致发送失败。异常情况如下图所示:

当Producer发送消息(x2,y2)给Broker时,Broker接收到消息并将其追加到消息流中。此时,Broker返回Ack信号给Producer时,发生异常导致Producer接收Ack信号失败。对于Producer来说,会触发重试机制,将消息(x2,y2)再次发送,但是,由于引入了幂等性,在每条消息中附带了PID(ProducerID)和SequenceNumber。相同的PID和SequenceNumber发送给Broker,而之前Broker缓存过之前发送的相同的消息,那么在消息流中的消息就只有一条(x2,y2),不会出现重复发送的情况。

2.3.3 ProducerID是如何生成的?

客户端在生成Producer时,会实例化如下代码:

// 实例化一个Producer对象
Producer<String, String> producer = new KafkaProducer<>(props);

在org.apache.kafka.clients.producer.internals.Sender类中,在run()中有一个maybeWaitForPid()方法,用来生成一个ProducerID,实现代码如下:

 private void maybeWaitForPid() {
if (transactionState == null)
return; while (!transactionState.hasPid()) {
try {
Node node = awaitLeastLoadedNodeReady(requestTimeout);
if (node != null) {
ClientResponse response = sendAndAwaitInitPidRequest(node);
if (response.hasResponse() && (response.responseBody() instanceof InitPidResponse)) {
InitPidResponse initPidResponse = (InitPidResponse) response.responseBody();
transactionState.setPidAndEpoch(initPidResponse.producerId(), initPidResponse.epoch());
} else {
log.error("Received an unexpected response type for an InitPidRequest from {}. " +
"We will back off and try again.", node);
}
} else {
log.debug("Could not find an available broker to send InitPidRequest to. " +
"We will back off and try again.");
}
} catch (Exception e) {
log.warn("Received an exception while trying to get a pid. Will back off and retry.", e);
}
log.trace("Retry InitPidRequest in {}ms.", retryBackoffMs);
time.sleep(retryBackoffMs);
metadata.requestUpdate();
}
}

3.事务

与幂等性有关的另外一个特性就是事务。Kafka中的事务与数据库的事务类似,Kafka中的事务属性是指一系列的Producer生产消息和消费消息提交Offsets的操作在一个事务中,即原子性操作。对应的结果是同时成功或者同时失败。

这里需要与数据库中事务进行区别,操作数据库中的事务指一系列的增删查改,对Kafka来说,操作事务是指一系列的生产和消费等原子性操作。

3.1 Kafka引入事务的用途?

在事务属性引入之前,先引入Producer的幂等性,它的作用为:

  • Producer多次发送消息可以封装成一个原子性操作,即同时成功,或者同时失败;
  • 消费者&生产者模式下,因为Consumer在Commit Offsets出现问题时,导致重复消费消息时,Producer重复生产消息。需要将这个模式下Consumer的Commit Offsets操作和Producer一系列生产消息的操作封装成一个原子性操作。

产生的场景有:

比如,在Consumer中Commit Offsets时,当Consumer在消费完成时Commit的Offsets为100(假设最近一次Commit的Offsets为50),那么执行触发Balance时,其他Consumer就会重复消费消息(消费的Offsets介于50~100之间的消息)。

3.2 事务提供了哪些可使用的API?

Producer提供了五种事务方法,它们分别是:initTransactions()、beginTransaction()、sendOffsetsToTransaction()、commitTransaction()、abortTransaction(),代码定义在org.apache.kafka.clients.producer.Producer<K,V>接口中,具体定义接口如下:

// 初始化事务,需要注意确保transation.id属性被分配
void initTransactions(); // 开启事务
void beginTransaction() throws ProducerFencedException; // 为Consumer提供的在事务内Commit Offsets的操作
void sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets,
String consumerGroupId) throws ProducerFencedException; // 提交事务
void commitTransaction() throws ProducerFencedException; // 放弃事务,类似于回滚事务的操作
void abortTransaction() throws ProducerFencedException;

3.3 事务的实际应用场景有哪些?

在Kafka事务中,一个原子性操作,根据操作类型可以分为3种情况。情况如下:

  • 只有Producer生产消息,这种场景需要事务的介入;
  • 消费消息和生产消息并存,比如Consumer&Producer模式,这种场景是一般Kafka项目中比较常见的模式,需要事务介入;
  • 只有Consumer消费消息,这种操作在实际项目中意义不大,和手动Commit Offsets的结果一样,而且这种场景不是事务的引入目的。

4.总结

Kafka的幂等性和事务是比较重要的特性,特别是在数据丢失和数据重复的问题上非常重要。Kafka引入幂等性,设计的原理也比较好理解。而事务与数据库的事务特性类似,有数据库使用的经验对理解Kafka的事务也比较容易接受。

5.结束语

这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

另外,博主出书了《Kafka并不难学》和《Hadoop大数据挖掘从入门到进阶实战》,喜欢的朋友或同学, 可以在公告栏那里点击购买链接购买博主的书进行学习,在此感谢大家的支持。关注下面公众号,根据提示,可免费获取书籍的教学视频。

Kafka幂等性原理及实现剖析的更多相关文章

  1. Kafka底层原理剖析(近万字建议收藏)

    Kafka 简介 Apache Kafka 是一个分布式发布-订阅消息系统.是大数据领域消息队列中唯一的王者.最初由 linkedin 公司使用 scala 语言开发,在2010年贡献给了Apache ...

  2. kafka系列四、kafka架构原理、高可靠性存储分析及配置优化

    一.概述 Kakfa起初是由LinkedIn公司开发的一个分布式的消息系统,后成为Apache的一部分,它使用Scala编写,以可水平扩展和高吞吐率而被广泛使用.目前越来越多的开源分布式处理系统如Cl ...

  3. Kafka详细原理

    Kafka Kafka是最初由Linkedin公司开发,是一个分布式.支持分区的(partition).多副本的(replica),基于zookeeper协调的分布式消息系统,它的最大的特性就是可以实 ...

  4. Kafka架构原理

    Kafka架构原理 最终大家会掌握 Kafka 中最重要的概念,分别是 Broker.Producer.Consumer.Consumer Group.Topic.Partition.Replica. ...

  5. [Spark内核] 第32课:Spark Worker原理和源码剖析解密:Worker工作流程图、Worker启动Driver源码解密、Worker启动Executor源码解密等

    本課主題 Spark Worker 原理 Worker 启动 Driver 源码鉴赏 Worker 启动 Executor 源码鉴赏 Worker 与 Master 的交互关系 [引言部份:你希望读者 ...

  6. 初学Kafka工作原理流程介绍

    Apache kafka 工作原理介绍 消息队列技术是分布式应用间交换信息的一种技术.消息队列可驻留在内存或磁盘上, 队列存储消息直到它们被应用程序读走.通过消息队列,应用程序可独立地执行--它们不需 ...

  7. HDFS集中式的缓存管理原理与代码剖析

    转载自:http://www.infoq.com/cn/articles/hdfs-centralized-cache/ HDFS集中式的缓存管理原理与代码剖析 Hadoop 2.3.0已经发布了,其 ...

  8. Kafka设计原理

    一.入门 1.简介 Apache Kafka是一个分布式消息发布订阅系统.它最初由LinkedIn公司基于独特的设计实现为一个分布式的提交日志系统( a distributed commit log) ...

  9. kafka系列九、kafka事务原理、事务API和使用场景

    一.事务场景 最简单的需求是producer发的多条消息组成一个事务这些消息需要对consumer同时可见或者同时不可见 . producer可能会给多个topic,多个partition发消息,这些 ...

随机推荐

  1. 还在重复写空指针检查代码?考虑使用 Optional 吧!

    一.前言 如果要给 Java 所有异常弄个榜单,我会选择将 NullPointerException 放在榜首.这个异常潜伏在代码中,就像个遥控炸弹,不知道什么时候这个按钮会被突然按下(传入 null ...

  2. python soket服务和客户端Demo

    #服务端from socket import * s=socket(AF_INET,SOCK_STREAM)#IVP4 寻址 tcp协议 s.bind(('',6666))#补丁端口 s.listen ...

  3. 【教程】基于Ubuntu系统的PyTorch虚拟环境配置

    目录 一.PyTorch虚拟环境配置 二.PyTorch虚拟环境使用 三.常用命令 Editor: Veagau Time: 2019/10/17 一.PyTorch虚拟环境配置 该部分操作均在终端( ...

  4. Redis 文章一 之持久化机制的介绍

    我们已经知道对于一个企业级的redis架构来说,持久化是不可减少的 企业级redis集群架构:海量数据.高并发.高可用 持久化主要是做灾难恢复,数据恢复,也可以归类到高可用的一个环节里面去,比如你re ...

  5. Python 常见异常类型

    python标准异常 异常名称                                   描述 BaseException                         所有异常的基类Sy ...

  6. 设计模式C++描述----15.策略(Strategy)模式

    一. 举例说明 以前做了一个程序,程序的功能是评价几种加密算法时间,程序的使用操作不怎么变,变的是选用各种算法. 结构如下: Algorithm:抽象类,提供算法的公共接口. RSA_Algorith ...

  7. 在.NET Core 3.0中发布单个EXE文件

    假设我有一个简单的“ Hello World”控制台应用程序,我想发送给朋友来运行.朋友没有安装.NET Core,所以我知道我需要为他构建一个独立的应用程序.很简单,我只需在项目目录中运行以下命令: ...

  8. MongoDB Java API操作很全的整理

    MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写,一般生产上建议以共享分片的形式来部署. 但是MongoDB官方也提供了其它语言的客户端操作API.如下图所示: 提供了C.C++ ...

  9. JavaScript基础修炼(14)——WebRTC在浏览器中如何获得指定格式的PCM数据

    目录 一. PCM格式是什么 二. 浏览器中的音频采集处理 三. 需求实现 方案1--服务端FFmpeg实现编码 方案2--ScriptProcessorNode手动处理数据流 参考文献 示例代码托管 ...

  10. Mongoose 基本用法

    1. SchemaTypes数据类型 数据类型 描述 String 字符串 Number 数字 Date 日期 Boolean 布尔值 Mixed 混合 Objectid 对象ID Array 数组 ...