拉格朗日对偶(Lagrange duality)

存在等式约束的极值问题求法,比如下面的最优化问题:

        

    目标函数是f(w),下面是等式约束。通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为

        

    L是等式约束的个数。

,然后解出w和。至于为什么引入拉格朗日算子可以求出极值,原因是f(w)的dw变化方向受其他不等式的约束,dw的变化方向与f(w)的梯度垂直时才能获得极值,而且在极值处,f(w)的梯度与其他等式梯度的线性组合平行,因此他们之间存在线性关系。(参考《最优化与KKT条件》)

然后我们探讨有不等式约束的极值问题求法,问题如下:

        

    我们定义一般化的拉格朗日公式

了,我们可以将调整成很大的正值,来使最后的函数结果是负无穷。因此我们需要排除这种情况,我们定义下面的函数:

   

    这里的P代表primal。假设或者,那么我们总是可以调整来使得有最大值为正无穷。而只有g和h满足约束时,为f(w)。这个函数的精妙之处在于,而且求极大值。

    因此我们可以写作

   

    这样我们原来要求的min f(w)可以转换成求了。    

   

    我们使用来表示。如果直接求解,首先面对的是两个参数,而也是不等式约束,然后再在w上求最小值。这个过程不容易做,那么怎么办呢?

    我们先考虑另外一个问题

    D的意思是对偶,将问题转化为先求拉格朗日关于w的最小值,将看作是固定值。之后在求最大值的话:

    这个问题是原问题的对偶问题,相对于原问题只是更换了min和max的顺序,而一般更换顺序的结果是Max Min(X) <= MinMax(X)。然而在这里两者相等。用来表示对偶问题如下:

   

    下面解释在什么条件下两者会等价。假设f和g都是凸函数,h是仿射的(affine,)。并且存在w使得对于所有的i,。在这种假设下,一定存在使得是原问题的解,是对偶问题的解。还有另外,满足库恩-塔克条件(Karush-Kuhn-Tucker, KKT condition),该条件如下:

   

),这个条件称作是KKT dual complementarity条件。这个条件隐含了如果,那么。也就是说,时,w处于可行域的边界上,这时才是起作用的约束。而其他位于可行域内部(的)点都是不起作用的约束,其。这个KKT双重补足条件会用来解释支持向量和SMO的收敛测试。

或等式约束里取得,而最优下降方向一般是这些等式的线性组合,其中每个元素要么是不等式为0的约束,要么是等式约束。对于在可行域边界内的点,对最优解不起作用,因此前面的系数为0。

拉格朗日对偶(Lagrange duality)的更多相关文章

  1. 拉格朗日对偶性(Lagrange duality)

    目录 拉格朗日对偶性(Lagrange duality) 1. 从原始问题到对偶问题 2. 弱对偶与强对偶 3. KKT条件 Reference: 拉格朗日对偶性(Lagrange duality) ...

  2. SVM小白教程(2):拉格朗日对偶

    在上一篇文章中,我们推导出了 SVM 的目标函数: \[ \underset{(\mathbf{w},b)}{\operatorname{min}} ||\mathbf{w}|| \\ \operat ...

  3. Support Vector Machine(2):Lagrange Duality求解线性可分SVM的最佳边界

    在上篇文章<Support Vector Machine(1):线性可分集的决策边界>中,我们最后得到,求SVM最佳Margin的问题,转化为了如下形式: 到这一步后,我个人又花了很长的时 ...

  4. 简易解说拉格朗日对偶(Lagrange duality)(转载)

    引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不 ...

  5. 简易解说拉格朗日对偶(Lagrange duality)

    引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不 ...

  6. 简易解说拉格朗日对偶(Lagrange duality)(转载)

    转载自https://www.cnblogs.com/90zeng/p/Lagrange_duality.html,本人觉得讲的非常好! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微 ...

  7. SVM(支持向量机)(二)—Lagrange Duality(拉格朗日对偶问题)

    (整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) SVM有点让人头疼,但还是要弄明白.把这一大块搞懂了,会很有成就感 ...

  8. 3. SVM分类器求解(1)——Lagrange duality

    先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题: 目标函数是f(w),下面是等式约束.通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为 是等式约束 ...

  9. 拉格朗日(Lagrange)插值算法

    拉格朗日插值(Lagrange interpolation)是一种多项式插值方法,指插值条件中不出现被插函数导数值,过n+1个样点,满足如下图的插值条件的多项式.也叫做拉格朗日公式.  这里以拉格朗日 ...

随机推荐

  1. Samza文档翻译 : Comparison Introduction

    http://samza.incubator.apache.org/learn/documentation/0.7.0/comparisons/introduction.html 这里有一些使得Sam ...

  2. tomcat集群部署

    1.apache只有处理静态事物的能力, 而tomcat的强项就是处理动态的请求 2.由apache作为入口,如果是请求静态页面或者是静态文件,由apache直接提供,如果是请求动态页面,则让apac ...

  3. 深入php面向对象和模式

    前两章是php历史和概论,略过. 第三章 对象基础 3.1 类和对象 类,是用于生成对象的代码模版. public 公有的,都可调用. protected 保护的, 只有本类和子类可以调用. priv ...

  4. SDUT2157——Greatest Number(STL二分查找)

    Greatest Number 题目描述Saya likes math, because she think math can make her cleverer.One day, Kudo invi ...

  5. Android安全问题 抢先接收广播 - 内因篇之广播发送流程

    导读:本文说明系统发送广播的部分流程,如何利用Intent查找到对应接收器.我们依然只关注接收器的排序问题 这篇文章主要是针对我前两篇文章 android安全问题(四) 抢先开机启动 - 结果篇 an ...

  6. python学习笔记三--字典

    一.字典: 1. 不是序列,是一种映射, 键 :值的映射关系. 2. 没有顺序和位置的概念,只是把值存到对应的键里面. 3. 通过健而不是通过偏移量来读取 4. 任意对象的无序集合 5. 可变长,异构 ...

  7. 使用PHP处理POST上传时$_FILES数组为何为空

    在做一个简单的表单上传测试时,服务端的php脚本中,$_FILES数组为空;这样就不能获取从浏览器上传的信息.什么原因呢? 通过Google,找到下面这个web: php上传文件$_FILES数组为空 ...

  8. Java之hashSet实现引用类型的禁止重复功能

    题目:在HashSet集合中添加Person对象,把姓名相同的人当作同一个人,禁止重复添加. 分析:1.定义一个Person类,定义name和age属性,并重写hashCode()和equals()方 ...

  9. poj3249

    显然是一道最短路径的题目,但是 1 ≤ n ≤ 100000, 0 ≤ m ≤ 1000000能轻松打爆dij+heap 怎么办? 挖掘题意,这是一个DAG图(有向无环图) 所以对于此类问题,我们有特 ...

  10. MySQL查询执行过程

    MySQL查询执行路径 1. 客户端发送一条查询给服务器: 2. 服务器先会检查查询缓存,如果命中了缓存,则立即返回存储在缓存中的结果.否则进入下一阶段: 3. 服务器端进行SQL解析.预处理,再由优 ...