拉格朗日对偶(Lagrange duality)

存在等式约束的极值问题求法,比如下面的最优化问题:

        

    目标函数是f(w),下面是等式约束。通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为

        

    L是等式约束的个数。

,然后解出w和。至于为什么引入拉格朗日算子可以求出极值,原因是f(w)的dw变化方向受其他不等式的约束,dw的变化方向与f(w)的梯度垂直时才能获得极值,而且在极值处,f(w)的梯度与其他等式梯度的线性组合平行,因此他们之间存在线性关系。(参考《最优化与KKT条件》)

然后我们探讨有不等式约束的极值问题求法,问题如下:

        

    我们定义一般化的拉格朗日公式

了,我们可以将调整成很大的正值,来使最后的函数结果是负无穷。因此我们需要排除这种情况,我们定义下面的函数:

   

    这里的P代表primal。假设或者,那么我们总是可以调整来使得有最大值为正无穷。而只有g和h满足约束时,为f(w)。这个函数的精妙之处在于,而且求极大值。

    因此我们可以写作

   

    这样我们原来要求的min f(w)可以转换成求了。    

   

    我们使用来表示。如果直接求解,首先面对的是两个参数,而也是不等式约束,然后再在w上求最小值。这个过程不容易做,那么怎么办呢?

    我们先考虑另外一个问题

    D的意思是对偶,将问题转化为先求拉格朗日关于w的最小值,将看作是固定值。之后在求最大值的话:

    这个问题是原问题的对偶问题,相对于原问题只是更换了min和max的顺序,而一般更换顺序的结果是Max Min(X) <= MinMax(X)。然而在这里两者相等。用来表示对偶问题如下:

   

    下面解释在什么条件下两者会等价。假设f和g都是凸函数,h是仿射的(affine,)。并且存在w使得对于所有的i,。在这种假设下,一定存在使得是原问题的解,是对偶问题的解。还有另外,满足库恩-塔克条件(Karush-Kuhn-Tucker, KKT condition),该条件如下:

   

),这个条件称作是KKT dual complementarity条件。这个条件隐含了如果,那么。也就是说,时,w处于可行域的边界上,这时才是起作用的约束。而其他位于可行域内部(的)点都是不起作用的约束,其。这个KKT双重补足条件会用来解释支持向量和SMO的收敛测试。

或等式约束里取得,而最优下降方向一般是这些等式的线性组合,其中每个元素要么是不等式为0的约束,要么是等式约束。对于在可行域边界内的点,对最优解不起作用,因此前面的系数为0。

拉格朗日对偶(Lagrange duality)的更多相关文章

  1. 拉格朗日对偶性(Lagrange duality)

    目录 拉格朗日对偶性(Lagrange duality) 1. 从原始问题到对偶问题 2. 弱对偶与强对偶 3. KKT条件 Reference: 拉格朗日对偶性(Lagrange duality) ...

  2. SVM小白教程(2):拉格朗日对偶

    在上一篇文章中,我们推导出了 SVM 的目标函数: \[ \underset{(\mathbf{w},b)}{\operatorname{min}} ||\mathbf{w}|| \\ \operat ...

  3. Support Vector Machine(2):Lagrange Duality求解线性可分SVM的最佳边界

    在上篇文章<Support Vector Machine(1):线性可分集的决策边界>中,我们最后得到,求SVM最佳Margin的问题,转化为了如下形式: 到这一步后,我个人又花了很长的时 ...

  4. 简易解说拉格朗日对偶(Lagrange duality)(转载)

    引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不 ...

  5. 简易解说拉格朗日对偶(Lagrange duality)

    引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不 ...

  6. 简易解说拉格朗日对偶(Lagrange duality)(转载)

    转载自https://www.cnblogs.com/90zeng/p/Lagrange_duality.html,本人觉得讲的非常好! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微 ...

  7. SVM(支持向量机)(二)—Lagrange Duality(拉格朗日对偶问题)

    (整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) SVM有点让人头疼,但还是要弄明白.把这一大块搞懂了,会很有成就感 ...

  8. 3. SVM分类器求解(1)——Lagrange duality

    先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题: 目标函数是f(w),下面是等式约束.通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为 是等式约束 ...

  9. 拉格朗日(Lagrange)插值算法

    拉格朗日插值(Lagrange interpolation)是一种多项式插值方法,指插值条件中不出现被插函数导数值,过n+1个样点,满足如下图的插值条件的多项式.也叫做拉格朗日公式.  这里以拉格朗日 ...

随机推荐

  1. Scrum中的User Story

    我们通常用User Story来描述Backlog里的各个Backlog项,User Story是从用户的角度对系统的某个功能模块所作的简短描述.一个User Story描述了项目中的一个小功能,以及 ...

  2. 使用 Spark 进行微服务的实时性能分析

    [编者按]当开发者从微服务架构获得敏捷时,观测整个系统的运行情况成为最大的痛点.在本文,IBM Research 展示了如何用 Spark 对微服务性能进行分析和统计,由 OneAPM 工程师编译整理 ...

  3. Flask, Tornado, GEvent, 以及它们的结合的性能比较

    Flask, Tornado, GEvent, 以及它们的结合的性能比较 英文: http://blog.wensheng.com/2011/10/performance-of-flask-torna ...

  4. 分析java程序中cpu占用过高的线程

    http://blog.csdn.net/jgwei/article/details/12079147 http://hllvm.group.iteye.com/group/topic/38893 h ...

  5. minicom 配置

    问题: 1:不相应按键,只有打印 Hardware Flow Control 选择NO minicom显示中文的设置:              env LANG=en_US minicom   可以 ...

  6. Oracle 列顺序测试

    列顺序测试 大家在做表设计的时候通常对表中列的排列顺序没有过多注意,但是其实越常用的列,它的位置越靠前,则查询速度越快. 因为每个block里面存储了row directory (每行数据在块中的位移 ...

  7. Flex Array内置排序方法的使用

    在Array类中,提供内置的排序方法.排序是在软件开发的过程中,经常遇到的问题.通过这些内置的方法,可以快速轻便的进行排序操作. Array类提供sort方法对Array实例进行排序.sort方法没有 ...

  8. 去除html标签 正则 <.+?> 解释

    http://baike.baidu.com/link?url=2zORJF9GOjU8AkmuHDLz9cyl9yiL68PdW3frayzLwWQhDvDEM51V_CcY_g1mZ7OPdcq8 ...

  9. minitools

    1.android 2.linux 3.luoji 4.windows CE ----

  10. HTML5学习(十一)---服务器发送事件

    参考教程:http://www.w3school.com.cn/html5/html_5_serversentevents.asp HTML5 服务器发送事件(server-sent event)允许 ...