Check whether a given graph is Bipartite or not

Bipartite Graph is a graph whose vertices can be divided into two independent sets, U and V such that every edge (u, v) either connects a vertex from U to V or a vertex from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, or u belongs to V and v to U. We can also say that there is no edge that connects vertices of same set.

A bipartite graph is possible if the graph coloring is possible using two colors such that vertices in a set are colored with the same color. Note that it is possible to color a cycle graph with even cycle using two colors. For example, see the following graph.

It is not possible to color a cycle graph with odd cycle using two colors.

Algorithm to check if a graph is Bipartite:
One approach is to check whether the graph is 2-colorable or not using backtracking algorithm m coloring problem.
Following is a simple algorithm to find out whether a given graph is Birpartite or not using Breadth First Search (BFS).
1. Assign RED color to the source vertex (putting into set U).
2. Color all the neighbors with BLUE color (putting into set V).
3. Color all neighbor’s neighbor with RED color (putting into set U).
4. This way, assign color to all vertices such that it satisfies all the constraints of m way coloring problem where m = 2.
5. While assigning colors, if we find a neighbor which is colored with same color as current vertex, then the graph cannot be colored with 2 vertices (or graph is not Bipartite)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<limits>
#include<vector>
#include<stack>
using namespace std;
struct edge{
int to, cost;
edge(int t){
this->to = t; this->cost = ;
}
};
void addEdge(vector<edge> &, vector<vector<int> > &, int, int);//add directed edge.
void buildMap(vector<edge> &edgelist, vector<vector<int> > &G){
addEdge(edgelist,G,,);
addEdge(edgelist,G,,);
addEdge(edgelist,G,,);
addEdge(edgelist,G,,);
addEdge(edgelist,G,,);
//addEdge(edgelist,G,5,0);
}
void addDoubleEdge(vector<edge> &, vector<vector<int> > &, int, int);// add undirected edge.
bool isCyclic(vector<edge>, vector<vector<int> >,vector<bool>, vector<bool>, int);// find cycles starting from v.
void isCyclicUtil(vector<edge>, vector<vector<int> >);// find all cycles.
bool dfs(vector<edge>, vector<vector<int> >, vector<bool>, int, int);//check if ''to'' is reachable from ''from''.
void isReachable(vector<edge>, vector<vector<int> >, int, int);
bool isBipartitie(vector<edge> , vector<vector<int> >,int v);//check if a graph is a bipartite graph.
int main(){
int maxn = ;
vector<edge> edgelist;
vector<vector<int> > G(maxn); buildMap(edgelist,G); //isCyclicUtil(edgelist, G); //isReachable(edgelist, G, 1, 1); if(isBipartitie(edgelist, G, )) cout<<"YES"<<endl;
else cout<<"NO"<<endl; return ;
}
bool isCyclic(vector<edge> edgelist, vector<vector<int> > G,vector<bool> vis, vector<bool> RecStack, int v){
for(int i=;i<G[v].size();++i){
edge e = edgelist[G[v][i]];
if(RecStack[e.to]) return true;
if(!vis[e.to]){
vis[e.to] = true; RecStack[e.to] = true;
if(isCyclic(edgelist,G,vis,RecStack,e.to)) return true;
RecStack[e.to] = false;
}
}
return false;
}
void isCyclicUtil(vector<edge> edgelist, vector<vector<int> > G){// find all cycles.
vector<bool> vis(G.size());
vector<bool> RecStack(G.size());
for(int i=;i<vis.size();++i) vis[i]=false;
for(int i=;i<RecStack.size();++i) RecStack[i]=false; for(int i=;i<G.size();++i){
if(!vis[i]){
vis[i] = true; RecStack[i] = true;
if(isCyclic(edgelist,G,vis,RecStack,i)){
cout<<i<<" starts a cycle"<<endl;
}
RecStack[i] = false;
}
}
}
void addEdge(vector<edge> &edgelist, vector<vector<int> > &G, int from, int to){
edgelist.push_back(edge(to));
G[from].push_back(edgelist.size()-);
}
void addDoubleEdge(vector<edge> &edgelist, vector<vector<int> > &G, int from, int to){
addEdge(edgelist,G,from,to);
addEdge(edgelist,G,to,from);
}
bool dfs(vector<edge> edgelist, vector<vector<int> > G, vector<bool> vis, int from, int to){
if(from == to) return true;
for(int i=;i<G[from].size();++i){
edge e = edgelist[G[from][i]];
if(e.to == to) return true;
if(!vis[e.to]){
vis[e.to] = true;
if(dfs(edgelist, G, vis, e.to, to)) return true;
}
}
return false;
}
void isReachable(vector<edge> edgelist, vector<vector<int> > G, int from, int to){
vector<bool> vis(G.size());
for(int i=;i<vis.size();++i) vis[i] = false;
vis[from] = true;
if(dfs(edgelist, G, vis, from, to)) cout<<from<<" and "<<to<<" are reachable to each other"<<endl;
else cout<<from<<" and "<<to<<" are not reachable to each other"<<endl;
}
bool isBipartitie(vector<edge> edgelist, vector<vector<int> > G,int v){
vector<int> color(G.size());
for(int i=;i<color.size();++i) color[i] = -;
stack<int> st;
while(!st.empty()) st.pop(); st.push(v); color[v]=;// 1 stands for RED, and 0 stands for BLUE, -1 stands for non-colored. while(!st.empty()){
int k = st.top(); st.pop(); for(int i=;i<G[k].size();++i){
edge e = edgelist[G[k][i]];
if(color[e.to] == -){
color[e.to] = - color[k];
st.push(e.to);
}
else if(color[e.to] == color[k]) return false;
}
}
return true;
}

dataStructure@ Check whether a given graph is Bipartite or not的更多相关文章

  1. dataStructure@ Check if a directed graph has cycles

    #include<iostream> #include<cstdio> #include<cstring> #include<limits> #incl ...

  2. Geeks - Check whether a given graph is Bipartite or not 二分图检查

    检查一个图是否是二分图的算法 使用的是宽度搜索: 1 初始化一个颜色记录数组 2 利用queue宽度遍历图 3 从随意源点出发.染色0. 或1 4 遍历这点的邻接点.假设没有染色就染色与这个源点相反的 ...

  3. LeetCode 785. Is Graph Bipartite?

    原题链接在这里:https://leetcode.com/problems/is-graph-bipartite/ 题目: Given an undirected graph, return true ...

  4. Is Graph Bipartite?

    Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...

  5. [LeetCode] Is Graph Bipartite? 是二分图么?

    Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...

  6. [Swift]LeetCode785. 判断二分图 | Is Graph Bipartite?

    Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...

  7. LeetCode - Is Graph Bipartite?

    Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...

  8. [LeetCode] 785. Is Graph Bipartite?_Medium tag: DFS, BFS

    Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...

  9. 785. Is Graph Bipartite?

    Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...

随机推荐

  1. [Unity+Android]横版扫描二维码

    原地址:http://blog.csdn.net/dingxiaowei2013/article/details/25086835 终于解决了一个忧伤好久的问题,严重拖了项目进度,深感惭愧!一直被一系 ...

  2. HDU 1004 ballons(map)

    题意:输出颜色最多的那个颜色. 思路:水题一道. #include <iostream> #include <string> #include <map> #inc ...

  3. MyBatis的动态SQL操作--删除

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAUYAAAC/CAIAAAANX+LCAAAYvElEQVR4nO2dWWycV9nHDyC6UEGBGy

  4. POJ3660——Cow Contest(Floyd+传递闭包)

    Cow Contest DescriptionN (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a prog ...

  5. GB2312 简体中文编码表

    GB 2312中对所收汉字进行了“分区”处理,每区含有94个汉字/符号.这种表示方式也称为区位码. 01-09区为特殊符号. 16-55区为一级汉字,按拼音排序. 56-87区为二级汉字,按部首/笔画 ...

  6. bzoj1857

    三分的入门题,如果从AB上一点走到D是一个单峰函数从AB开始向CD传送带走的那个点也是一个单峰函数显然三分套三分 const eps=1e-5; var ax,ay,bx,by,cx,cy,dx,dy ...

  7. shape的属性

    <?xml version="1.0" encoding="utf-8"?> <shape xmlns:android="http: ...

  8. LRU与MRU算法

    1.Cache Hit and Cache Miss 当使用者第一次向数据库发出查询数据的请求的时候,数据库会先在缓冲区中查找该数据,如果要访问的数据恰好已经在缓冲区中(我们称之为Cache Hit) ...

  9. 学习面试题Day02

    1.Java的引用和C++的指针有什么区别? 1.类型:引用其值为地址的数据元素,Java封装了的地址,可以转成字符串查看,长度可以不必关心.C++指针是一个装地址的变量,长度一般是计算机字长,可以认 ...

  10. GitHub进一步了解

    为什么要引入Git: 1)用简单一点的例子来讲: 一个公司有几个甚至十几个人共同合作开发一款项目的时候,公司对项目代码有明确规范,不可能再像学校做的小项目一样,你觉得哪个同学的代码写的不好,或者和你的 ...