Problem A - Assemble

Time limit: 2 seconds

Recently your team noticed that the computer you use to practice for programming contests is not good enough anymore. Therefore, you decide to buy a new computer.

To make the ideal computer for your needs, you decide to buy separate components and assemble the computer yourself. You need to buy exactly one of each type of component.

The problem is which components to buy. As you all know, the quality of a computer is equal to the quality of its weakest component. Therefore, you want to maximize the quality of the component with the lowest quality, while not exceeding your budget.

Input

On the first line one positive number: the number of testcases, at most 100. After that per testcase:

  • One line with two integers: 1 ≤ n ≤ 1000, the number of available components and 1 ≤ b ≤ 1000000000, your budget.
  • n lines in the following format: ``type name price quality'', where type is a string with the type of the component, name is a string with the unique name of the component, price is an integer (0 ≤ price < 1000000) which represents the price of the component and quality is an integer (0 ≤ quality ≤ 1000000000) which represents the quality of the component (higher is better). The strings contain only letters, digits and underscores and have a maximal length of 20 characters.

It will always possible to construct a computer with your budget.

Output

Per testcase:

  • One line with one integer: the maximal possible quality.

Sample Input

1
18 800
processor 3500_MHz 66 5
processor 4200_MHz 103 7
processor 5000_MHz 156 9
processor 6000_MHz 219 12
memory 1_GB 35 3
memory 2_GB 88 6
memory 4_GB 170 12
mainbord all_onboard 52 10
harddisk 250_GB 54 10
harddisk 500_FB 99 12
casing midi 36 10
monitor 17_inch 157 5
monitor 19_inch 175 7
monitor 20_inch 210 9
monitor 22_inch 293 12
mouse cordless_optical 18 12
mouse microsoft 30 9
keyboard office 4 10

Sample Output

9
The 2007 ACM Northwestern European Programming Contest
 
题意:你要去自己买个组装机,现在给你每个零件的类别、名字、价钱、级别,以及你有的钱数,求能组装成的机器的最大级别(机器的所有零件中的最小级别,即最小值最大)。
 
解决“最小值最大”问题的常用方法是“二分答案”。
何为二分答案?以本题为例,假设机器的所有零件中的最小级别为x,删除级别小于x的所有配件,若可以组装成一台不超过b元的电脑,那么ans≥x, 否则ans<x;
 
至于如何判断是否可以组装出不超过b元的电脑。利用贪心的思路,每种配件选择最便宜的一个即可。
 
二分部分代码:
 while(L < R)
{
int M = L+(R-L+)/;
if(ok(M)) L = M;
else R = M-;
}

贪心部分代码:

 bool ok(int q)
{
int sum = ;
for(int i = ; i < cnt; i++)
{
int sz = comp[i].size();
int cheapest = b+;
for(int j = ; j < sz; j++)
{
if(comp[i][j].quality >= q)
cheapest = min(cheapest, comp[i][j].price);//选择最便宜的
}
if(cheapest == b+) return false;
sum += cheapest;
if(sum > b) return false;
}
return true;
}

代码如下:

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<vector>
#include<map>
using namespace std;
const int maxn = ; struct Component
{
int price, quality;
};
vector<Component> comp[maxn];
int n, b, cnt; map<string, int> id;
int type_ID(string s)
{
if(!id.count(s)) id[s] = cnt++;
return id[s];
}
bool ok(int q)
{
int sum = ;
for(int i = ; i < cnt; i++)
{
int sz = comp[i].size();
int cheapest = b+;
for(int j = ; j < sz; j++)
{
if(comp[i][j].quality >= q)
cheapest = min(cheapest, comp[i][j].price);
}
if(cheapest == b+) return false;
sum += cheapest;
if(sum > b) return false;
}
return true;
}
int main()
{
int T; scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &b);
int maxq = ; cnt = ; id.clear();
for(int i = ; i < n; i++) comp[i].clear();
for(int i = ; i < n; i++)
{
char type[], name[]; scanf("%s%s", type, name);
int pri, qua; scanf("%d%d", &pri, &qua);
maxq = max(qua, maxq);
Component tmp; tmp.price = pri, tmp.quality = qua;
string tp(type);
comp[type_ID(tp)].push_back(tmp);
}
int L = , R = maxq;
while(L < R)
{
//cout << "-----" <<endl;
int M = L+(R-L+)/;
if(ok(M)) L = M;
else R = M-;
}
printf("%d\n", L);
}
return ;
}

【二分答案+贪心】解决“最小值最大”问题(UVa 12124 - Assemble)的更多相关文章

  1. 洛谷3933 Chtholly Nota Seniorious 二分答案+贪心

    题目链接 题意 给你一个N*M的矩阵 (N,M <=2000)  把他分成两部分 使两部分的极差较大的一个最小  求这个最小值.然后分矩阵的要求是:每个部分内部的方块之间,可以通过上下左右相互到 ...

  2. BZOJ_2196_[Usaco2011 Mar]Brownie Slicing_二分答案+贪心

    BZOJ_2196_[Usaco2011 Mar]Brownie Slicing_二分答案+贪心 Description Bessie烘焙了一块巧克力蛋糕.这块蛋糕是由R*C(1 <= R,C ...

  3. 【二分答案+贪心】UVa 1335 - Beijing Guards

    Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the Imperial City ...

  4. [CSP-S模拟测试]:kill(二分答案+贪心)

    题目传送门(内部题50) 输入格式 第一行包含四个整数$n,m,s$,表示人数.怪物数及任务交付点的位置.第二行包含$n$个整数$p_1,p_2,...,p_n$.第三行包含$n$个整数$q_1,q_ ...

  5. UVA 12124 Assemble(二分答案)

    题目链接:https://vjudge.net/problem/UVA-12124 垃圾vjudge毁我青春!! 首先这道题是解决“最小值最大”的问题,所以要二分答案. 在这里我们二分$quality ...

  6. 【洛谷】【二分答案+贪心】P1316 丢瓶盖

    [题目描述:] 陶陶是个贪玩的孩子,他在地上丢了A个瓶盖,为了简化问题,我们可以当作这A个瓶盖丢在一条直线上,现在他想从这些瓶盖里找出B个,使得距离最近的2个距离最大,他想知道,最大可以到多少呢? [ ...

  7. BZOJ5321 JXOI2017加法(二分答案+贪心+堆+树状数组)

    二分答案后得到每个位置需要被加的次数.考虑贪心.从左到右考虑每个位置,将以该位置为左端点的区间按右端点从大到小加进堆.看该位置还需要被加多少次,如果不需要加了就不管,否则取堆顶区间将其选择,BIT实现 ...

  8. Gym 100886J Sockets 二分答案 + 贪心

    Description standard input/outputStatements Valera has only one electrical socket in his flat. He al ...

  9. bzoj 4310 跳蚤 —— 后缀数组+二分答案+贪心

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4310 二分答案——在本质不同的子串中二分答案! 如果二分到的子串位置是 st,考虑何时必须分 ...

随机推荐

  1. bzoj 1835 [ZJOI2010]base 基站选址(DP+线段树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1835 [题意] 有n个村庄,每个村庄位于d[i],要求建立不多于k个基站,在第i个村庄 ...

  2. uvalive 4795 Paperweight

    题意:给出一个5个顶点的多面体以及多面体内一点P.求让 多面体不同的方式(即以不同的面)放在地面上,设这个着地的面为A,多面体重心在A上的投影为B,在保证B在A内部且距离A的各个边界不小于0.2的前提 ...

  3. 在中国Windows Azure服务中创建应用程序的一些不同之处

    Azure 中的托管服务由一个应用程序(用于在托管服务中运行)和 XML 配置文件(定义托管服务的运行方式)组成.托管服务同时使用服务定义文件 (.csdef) 和配置文件 (.cscfg).有关详细 ...

  4. 【转载】/etc/passwd & /etc/shadow 详解

    转载自:http://blog.csdn.net/snlying/article/details/6130468 1,passwd文件passwd文件存放在/etc目录下.这个文件存放着所有用户帐号的 ...

  5. SQL2008R2日志传送需要注意点

    当SQL2008R2采用日志传送方式进行备份/还原时需要注意事项 主从数据库机器必须是局域网内可互相通过共享访问的主机 主从数据库须添加系统帐号,并将sqlagent服务的启动帐号设定为此帐号,最好主 ...

  6. SQL2008-备份SQL数据库的语句

    SQL2008:1.备份库BACKUP DATABASE CDJQ_CEM2008 TO DISK = 'd:\zhu\123.bak'2.开启RAR加压功能EXEC sp_configure 'sh ...

  7. 求前几日的平均值用obj.reduce()方法

    const average = data=>data.map((item, idx, origin)=>Math.round(origin.slice(0,idx+1).reduce((a ...

  8. 【Away3D代码解读】其它一些的记录(持续更新)

    查看当前正在使用的AGAL代码可以在程序开始时添加下面的代码,AGAL代码会被trace出来: Debug.active = true; 具体的输出是在MaterialPassBase类的update ...

  9. 安卓开发21:深入理解Handler

    Handler相关说明: 主要接受子线程发送的数据, 并用此数据配合主线程更新UI. 解释:安卓的UI线程(即OnCreate函数创建的线程)是线程非安全的.也就是说,在UI线程中,使用sleep这样 ...

  10. -join 和 -split 用法

    具体可参考 PowerShell_ISE的帮助文件: -Join(一元联接运算符): 一元联接运算符 (-join <string[]>) 的优先级高于逗号.因此,如果向一元联接运算符提交 ...