Question

Given a set of distinct integers, nums, return all possible subsets.

Note:

  • Elements in a subset must be in non-descending order.
  • The solution set must not contain duplicate subsets.

For example,
If nums = [1,2,3], a solution is:

[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]

Solution 1 -- BFS

Because it's required that subset must be non-descending order, we can sort input array first. We can write out the solution space tree.

For example, input is [1,2,3]

      []

     / | \

   [1]    [2] [3]

  / \    |

[1,2] [1,3]  [2,3]

If element of last level is [i, j, .., k], then we could traverse elements from [k + 1, .., last] to add one element to construct complete answers.

BFS can be easily implemented to solve this problem. Time complexity is size of solution space tree, ie, Cn0 + Cn+ Cn2 + .. + Cnn/2

 public class Solution {
public List<List<Integer>> subsets(int[] nums) {
Arrays.sort(nums);
int length = nums.length;
List<List<Integer>> results = new ArrayList<List<Integer>>();
List<List<Integer>> current = new ArrayList<List<Integer>>();
results.add(new ArrayList<Integer>());
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
for (int i = 0; i < length; i++) {
map.put(nums[i], i);
List<Integer> tmp = new ArrayList<Integer>();
tmp.add(nums[i]);
current.add(tmp);
results.add(tmp);
}
while (current.size() > 0) {
List<List<Integer>> next = new ArrayList<List<Integer>>();
int l = current.size();
for (int i = 0; i < l; i++) {
List<Integer> currentList = current.get(i);
int ll = currentList.size();
int last = currentList.get(ll - 1);
int index = map.get(last);
for (int j = index + 1; j < length; j++) {
// Note: create a new object
List<Integer> newList = new ArrayList<Integer>(currentList);
newList.add(nums[j]);
next.add(newList);
results.add(newList);
}
}
current = next;
}
return results;
}
}

Solution 2 -- DFS

We can transfer this problem to be list all combinations from number 0 to nums.length

And we can get combinations of each size by DFS. Same time complexity as solution 1.

 public class Solution {
public List<List<Integer>> subsets(int[] nums) {
Arrays.sort(nums);
int length = nums.length;
List<List<Integer>> results = new ArrayList<List<Integer>>();
results.add(new ArrayList<Integer>());
for (int i = 1; i <= length; i++) {
dfs(nums, 0, results, new ArrayList<Integer>(), i);
}
return results;
} private void dfs(int[] nums, int start, List<List<Integer>> results, List<Integer> list, int level) {
if (list.size() == level)
results.add(new ArrayList<Integer>(list));
for (int i = start; i < nums.length; i++) {
list.add(nums[i]);
dfs(nums, i + 1, results, list, level);
list.remove(list.size() - 1);
}
}
}

Subsets 解答的更多相关文章

  1. Subsets II 解答

    Question Given a collection of integers that might contain duplicates, nums, return all possible sub ...

  2. 深度优先搜索算法(DFS)以及leetCode的subsets II

    深度优先搜索算法(depth first search),是一个典型的图论算法.所遵循的搜索策略是尽可能“深”地去搜索一个图. 算法思想是: 对于新发现的顶点v,如果它有以点v为起点的未探测的边,则沿 ...

  3. Cracking the coding interview--问题与解答

    http://www.hawstein.com/posts/ctci-solutions-contents.html 作者:Hawstein出处:http://hawstein.com/posts/c ...

  4. LeetCode题目解答

    LeetCode题目解答——Easy部分 Posted on 2014 年 11 月 3 日 by 四火 [Updated on 9/22/2017] 如今回头看来,里面很多做法都不是最佳的,有的从复 ...

  5. LeetCode算法题目解答汇总(转自四火的唠叨)

    LeetCode算法题目解答汇总 本文转自<四火的唠叨> 只要不是特别忙或者特别不方便,最近一直保持着每天做几道算法题的规律,到后来随着难度的增加,每天做的题目越来越少.我的初衷就是练习, ...

  6. 刷题78. Subsets

    一.题目说明 题目78. Subsets,给一列整数,求所有可能的子集.题目难度是Medium! 二.我的解答 这个题目,前面做过一个类似的,相当于求闭包: 刷题22. Generate Parent ...

  7. Subsets II

    Given a collection of integers that might contain duplicates, nums, return all possible subsets. Not ...

  8. Subsets

    Given a set of distinct integers, nums, return all possible subsets. Note: The solution set must not ...

  9. [LeetCode] Subsets II 子集合之二

    Given a collection of integers that might contain duplicates, S, return all possible subsets. Note: ...

随机推荐

  1. Horner规则

    霍纳(Horner)规则是采用最少的乘法运算策略,求多项式 A(x) = a[n]x^n + a[n-1]x^(n-1) + ... + a[1]x^1 + a[0]x^0 在x处的值. 该规则为 A ...

  2. VMdomainXml

    1,One,Euc,Ostack 虚拟磁盘镜像制作方法[Windows,Linux,类linux OS](1,基于ios部署系统生成img,2基于vm xml定义部署系统生成img qcow2) 如需 ...

  3. shell编程笔记(1)

    shell编程: 编译器,解释器 编程语言:机器语言.汇编语言.高级语言 静态语言:编译型语言    强类型(变量)    事先转换成可执行格式    C.C++.JAVA.C#           ...

  4. Hibernaate事务管理

    Hibernate使用session时需要继承HibernateDaoSupport对象 HibernateDaoSupport对象中包含默认的getSession()方法,但不可以通过该方法直接启动 ...

  5. Oracle通过指令创建用户

    Oracle作为世界上使用最广泛的关系数据库,对于客户很多每天海量数据的公司是首要选择.我们公司在双十一期间,曾发生过每网点每天1G多的扫描数据量,全国有六千多个网点,每天每时不停读写数据库,而数据库 ...

  6. hdu1016Prime Ring Problem

     就是说,给你一个数n, 要你把1到n都连在一起成环. 每一个数不可反复, 且相连的两个数的和要是素数. 把全部情况输出来. 我是用dfs暴力出来的. 首先把素数打表, 然后每次顺时针预測下一个数 ...

  7. R6010 -abort() has been called错误分析及其解决方法

    近期使用vs2010编程出现下面问题.在网上收集了大家的意见之后,整理了一下 导致出现这种原因有: 1.非法指针訪问和内存泄漏 2.大家再查查吧.一定是指针出现故障了.设置的指针范围跟你执行的不正确 ...

  8. [Ember] Wraming up

    1.1: <!DOCTYPE html> <html> <head> <base href='http://courseware.codeschool.com ...

  9. UIImage与UIColor互转

    Objective-C UIColor -> UIImage ? 1 2 3 4 5 6 7 8 9 10 11 - (UIImage*) createImageWithColor: (UICo ...

  10. Android应用程序的Activity启动过程简要介绍和学习计划

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6685853 在Android系统中,Activ ...