题目请戳这里

题目大意:求混合图欧拉回路。

题目分析:最大流。竟然用网络流求混合图的欧拉回路,涨姿势了啊啊。。

其实仔细一想也是那么回事。欧拉回路是遍历所有边一次又回到起点的回路。双向图只要每个点度数为偶数即可,有向图要保证所有点入度等于出度。求路径的话,dfs即可。

混合图的话,就比较复杂。首先将有向边定向,求出所有点的入度和出度,如果某个点入度和出度之差为奇数,则一定不存在欧拉回路,因为对于混合图,无向边可以任意指定方向,但是无论指定哪个方向,如果取反向的话,只会影响端点的一个出度和一个入度,所以无论无向边如何定向,是不影响节点入度和出度之差的奇偶性的。无向边定向后转化成一张有向图,那么所有的顶点就分成3类:

1:入度= 出度的点,已经是平衡点了,不管;

2:入度>出度的点,向汇点建一条边,边权为(入度- 出度)/2;

3:入度<出度的点,源点与之建一条边,边权为(出度- 入度)/2;

这样跑一遍最大流,看是否为满流。如果是满流,就存在欧拉回路。

因为如果跑出来一个满流,那么对于每个入度>出度的点,都有x条边进来,那么这x条边反向,那么该节点入度=出度,平衡了,对于每个出度>入度的点也是同理。对于出度=入度的点,因为建图的时候没有管他们,也就是说他们本来就是平衡点,所以源点和汇点与之没有直接边,但并不代表这些点就不在图中,因为非平衡点会与之有边相连。如果要求一条具体的欧拉回路的话,只要看具体的网络流,对于流量为1的边,取反便是欧拉回路中一条边了。所谓取反只是对无向边而言的,说明一开始对无向边定向定反了。

详情请见代码:

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 205;
const int M = 40000;
const int inf = 0x3f3f3f3f; int n,m,num,sum;
int head[N],sta[N],que[N],cnt[N],dis[N],rpath[N];
int in[N],out[N];
struct node
{
int to,c,next,pre;
}arc[M];
void build(int s,int e,int cap)
{
arc[num].to = e;
arc[num].c = cap;
arc[num].next = head[s];
head[s] = num ++;
arc[num - 1].pre = num;
arc[num].pre = num - 1;
arc[num].to = s;
arc[num].c = 0;
arc[num].next = head[e];
head[e] = num ++;
}
void init()
{
int i,a,b,d;
scanf("%d%d",&n,&m);
for(i = 1;i <= n;i ++)
in[i] = out[i] = 0;
memset(head,-1,sizeof(head));
num = 0;
while(m --)
{
scanf("%d%d%d",&a,&b,&d);
if(d == 0)
build(a,b,1);
out[a] ++;
in[b] ++;
}
}
void re_Bfs()
{
int i,front,rear;
for(i = 0;i <= n + 1;i ++)
{
dis[i] = n + 2;
cnt[i] = 0;
}
dis[n + 1] = 0;
cnt[0] = 1;
front = rear = 0;
que[rear ++] = n + 1;
while(front != rear)
{
int u = que[front ++];
for(i = head[u];i != -1;i = arc[i].next)
{
if(arc[arc[i].pre].c == 0 || dis[arc[i].to] < n + 2)
continue;
dis[arc[i].to] = dis[u] + 1;
cnt[dis[arc[i].to]] ++;
que[rear ++] = arc[i].to;
}
}
}
int ISAP()
{
re_Bfs();
int i,u,maxflow = 0;
for(i = 0;i <= n + 1;i ++)
sta[i] = head[i];
u = 0;
while(dis[0] < n + 2)
{
if(u == n + 1)
{
int curflow = inf;
for(i = 0;i != n + 1;i = arc[sta[i]].to)
curflow = min(curflow,arc[sta[i]].c);
for(i = 0;i != n + 1;i = arc[sta[i]].to)
{
arc[sta[i]].c -= curflow;
arc[arc[sta[i]].pre].c += curflow;
}
maxflow += curflow;
u = 0;
}
for(i = sta[u];i != -1;i = arc[i].next)
if(arc[i].c > 0 && dis[arc[i].to] + 1 == dis[u])
break;
if(i != -1)
{
sta[u] = i;
rpath[arc[i].to] = arc[i].pre;
u = arc[i].to;
}
else
{
if((-- cnt[dis[u]]) == 0)
break;
int Min = n + 2;
sta[u] = head[u];
for(i = head[u];i != -1;i = arc[i].next)
if(arc[i].c > 0)
Min = min(Min,dis[arc[i].to]);
dis[u] = Min + 1;
cnt[dis[u]] ++;
if(u != 0)
u = arc[rpath[u]].to;
}
}
return maxflow;
}
bool solve()
{
int i;
sum = 0;
for(i = 1;i <= n;i ++)
{
if(in[i] > out[i])
{
if((in[i] - out[i])&1)
return false;
build(i,n + 1,(in[i] - out[i])>>1);
}
if(in[i] < out[i])
{
if((out[i] - in[i])&1)
return false;
build(0,i,(out[i] - in[i])>>1);
sum += (out[i] - in[i])>>1;
}
}
return ISAP() == sum;
}
int main()
{
int t;
scanf("%d",&t);
while(t --)
{
init();
if(solve())
puts("possible");
else
puts("impossible");
}
return 0;
}
//200K 0MS

poj1637Sightseeing tour(混合图欧拉回路)的更多相关文章

  1. POJ 1637 Sightseeing tour ★混合图欧拉回路

    [题目大意]混合图欧拉回路(1 <= N <= 200, 1 <= M <= 1000) [建模方法] 把该图的无向边随便定向,计算每个点的入度和出度.如果有某个点出入度之差为 ...

  2. poj1637 Sightseeing tour(混合图欧拉回路)

    题目链接 题意 给出一个混合图(有无向边,也有有向边),问能否通过确定无向边的方向,使得该图形成欧拉回路. 思路 这是一道混合图欧拉回路的模板题. 一张图要满足有欧拉回路,必须满足每个点的度数为偶数. ...

  3. POJ1637 Sightseeing tour (混合图欧拉回路)(网络流)

                                                                Sightseeing tour Time Limit: 1000MS   Me ...

  4. poj 1637 Sightseeing tour 混合图欧拉回路 最大流 建图

    题目链接 题意 给定一个混合图,里面既有有向边也有无向边.问该图中是否存在一条路径,经过每条边恰好一次. 思路 从欧拉回路说起 首先回顾有向图欧拉回路的充要条件:\(\forall v\in G, d ...

  5. poj1637 Sightseeing tour 混合图欧拉回路判定

    传送门 第一次做这种题, 尽管ac了但是完全不知道为什么这么做. 题目就是给一些边, 有向边与无向边混合, 问你是否存在欧拉回路. 做法是先对每个点求入度和出度, 如果一条边是无向边, 就随便指定一个 ...

  6. POJ 1637 Sightseeing tour (混合图欧拉回路)

    Sightseeing tour   Description The city executive board in Lund wants to construct a sightseeing tou ...

  7. 混合图欧拉回路POJ1637Sightseeing tour

    http://www.cnblogs.com/looker_acm/archive/2010/08/15/1799919.html /* ** 混合图欧拉回路 ** 只记录各定点的出度与入度之差,有向 ...

  8. POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]

    嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...

  9. Sightseeing tour 【混合图欧拉回路】

    题目链接:http://poj.org/problem?id=1637 Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total ...

随机推荐

  1. JavaScript中创建命名空间

    引用:http://ourjs.com/detail/538d8d024929582e6200000c   在JavaScript中全局变量经常会引起命名冲突,甚至有时侯重写变量也不是按照你想像中的顺 ...

  2. SQL文件导入到mysql乱码

    在输入中文之前先SET NAMES GBK 彻底解决MYSQL中文乱码的办法((5.5以后版本:) 修改MYSQL配置文件my.ini [client] default-character-set=u ...

  3. PhotoShop-CS4使用-----如何对psd进行简单切图

    一.如何快速截图 1.如果图片为psd样式   2.要用放大器放大该图,选择放大器,放大后如图 3.开始切图  以其中一个为例,选中你所要选择切的图片 4. 选中后 5.选择文件---新建   6.此 ...

  4. JAVA仿真之银行出纳员

    学习例子是参照<thinking in java>中修改的,先贴上运行结果: 注意看红框之中的内容,这个仿真要达到这样一个目的: 1.客户队列(无优先级):每隔300MILLS生产一个客户 ...

  5. Cortex-M3学习日志(一)-- GPIO实验

    因为项目所需,所以不得不开始研究M3,我用的是NXP公司的LPC1768这个芯片,它是具有三级流水线的哈佛结构,带独立的本地指令和数据总线以及用于外设的稍微低性能的第三条总线,还包含一个支持随机跳转的 ...

  6. [android]清单文件中MAIN与LAUNCHER的区别

    原文:[android]清单文件中MAIN与LAUNCHER的区别 MAIN 和 LAUNCHER,之前一直不注意这两个有区别,写程序的时候都放到一个filter中,前两天面试问到了,总结一下: MA ...

  7. POJ 2799 IP Networks

    network address是前(32-n)随意 后n位全零 network mask是前(32-n)全一 后n位全零 本题主要利用位移操作,1ULL表示无符号长整型的常数1,这样写可防止不必要的溢 ...

  8. #include <thread>

    1 detach 脱离当前主线程,自由执行,乱序; 2 join() 等待模式,执行完再执行下一个 3 std::this_thread::get_id() 获取当前线程编号 4 std::threa ...

  9. Spring构造器注入、set注入和注解注入

    记得刚开始学spring的时候,老师就反复的提到依赖注入和切面,平常的java开发中,在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种方法耦合度太高并且不容易测试,sp ...

  10. LNMP : 502 Bad Gateway 解决小记,真正的原因

    站点搬迁到新的server.原先一直都是LAMP.如今改为LNMP. 将重写文件 htaccess改成 nginx的 conf.放到了站点.可仅仅能打开首页,其它重写页面一打开都是不停的载入. 载入等 ...