hdu4507
数位dp,终于守得云开见月明了。建议初学者先试试两道比较简单的hdu2089,hdu3555。
鸣谢:http://blog.csdn.net/acm_cxlove/article/details/8707084。
数位dp也是一种基于状态压缩、优化的动态规划。不同的是,它的压缩和优化往往基于数的一些特性。而数最基本的表现形式:a/b --- [a/b]、[a%b]。
这种dp才是体现一个人智慧的地方。(额外想为ACM竞赛的同学说两句,个人还是特别顶复旦出题的,至少它出的绝大部分题目都是可以自己通过大学以前的数学知识慢慢想到,而不是像某些学校的题目,只要听说过、学过、看过,某一个不知道哪里冒出来的数学理论就能瞬间AC,否则***。还是不放水了,言归正传)
本题,中文描述的,不解释了。初学者往往都会往容斥的方面想,(也不是不可以)但其实条件2、条件3的综合比较困难了,代码量和复杂度可能都会很大。
所以直接递归找跟7有关的数比较科学,假设原数字a+b位,如果搜索前a位fa(fa后b位都是0),后面b位跟7有关的任何一个数x,产生的结果和是(fa+x)^2+x^2。对所有的x,就有{fa^2*cnt(x)+2fa*sum(x)+sum(x^2)=f(a+b,b)}+f(b,0)。这个很容易想到,那么如果搜索时刚好按a从小到大拆分呢?不就是很明显了吗?
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
#define LL long long
const LL mod = 1000000007LL;
#define mp(a,b) make_pair(a,b)
int bit[];
//长度,是否有7,数字和%7,数字%; 数字和、结果和、数字个数
long long s1[][][][],s2[][][][],cnt[][][][];
LL fac[]={};
typedef pair<pair<LL,LL>,LL> pll;
pll DP(int len,int a,int b,int c,int g){
//printf("len = %d, %d, %d, %d, g = %d\n",len,a,b,c,g);
if(g && cnt[len][a][b][c] >= )
return mp(mp(cnt[len][a][b][c],s1[len][a][b][c]),s2[len][a][b][c]);
if(len <= ){
if(b&&c&&!a) cnt[][a][b][c]=;
else cnt[][a][b][c]=;
s1[][a][b][c]=s2[][a][b][c]=;
return mp(mp(cnt[len][a][b][c],s1[len][a][b][c]),s2[len][a][b][c]);
}
int bound=bit[len]; if(g) bound=;
LL tcnt=,ts1=,ts2=;
int nl=len-,na,nb,nc;
for(int i=;i<=bound;i++){
na=(a||i==); nb=(b+i)%; nc=(c*+i)%;
pll p=DP(nl,na,nb,nc,g||(i<bound));
LL f = fac[nl]*i % mod; //f按位拆分,不用靠递归记录!!!
tcnt= (tcnt+p.first.first)%mod;
ts1 = (ts1+p.first.second+p.first.first*f)%mod;
ts2 = (ts2+p.first.first*(f*f%mod)%mod+p.first.second*f*%mod+p.second)%mod;
}
if(g){
cnt[len][a][b][c] = tcnt;
s1[len][a][b][c] = ts1;
s2[len][a][b][c] = ts2;
}
return mp(mp(tcnt,ts1),ts2);
}
LL sum(LL n){
LL a=n,b=n+,c=*n+;
LL x=,y=;
if(a%x==) a/=x,x=;if(a%y==) a/=y,y=;
if(b%x==) b/=x,x=;if(b%y==) b/=y,y=;
if(c%x==) c/=x,x=;if(c%y==) c/=y,y=;
a%=mod;b%=mod;c%=mod;
return (a*b%mod)*c%mod;
}
LL solve(LL n){
if(n <= ) return ;
int len=;
memset(bit,,sizeof(bit));
LL m=n;
while(n > )
bit[++len]=n%, n/=;
//cout<<"n = "<<m<<" ,len = "<<len<<endl;
return ((sum(m)-DP(len,,,,).second)%mod+mod)%mod;
}
int main()
{
for(int i=;i<;i++)
fac[i]=(fac[i-]*)%mod;
memset(cnt,-,sizeof(cnt));
int cases; cin>>cases;
for(int cas=;cas<=cases;cas++){
LL l,r;
cin>>l>>r;
//scanf("%lld%lld",&l,&r);
cout<<((solve(r)-solve(l-))%mod+mod)%mod<<endl;
}
return ;
}
hdu4507的更多相关文章
- [HDU4507]吉哥系列故事——恨7不成妻
[HDU4507]吉哥系列故事--恨7不成妻 试题描述 单身!依然单身!吉哥依然单身!DS级码农吉哥依然单身!所以,他生平最恨情人节,不管是214还是77,他都讨厌!吉哥观察了214和77这两个数,发 ...
- HDU-4507 吉哥系列故事——恨7不成妻 数位DP
题意:给定区间[L, R]求区间内与7无关数的平方和.一个数当满足三个规则之一则认为与7有关:1.整数中某一位是7:2.整数的每一位加起来的和是7的整数倍:3.这个整数是7的整数倍: 分析:初看起来确 ...
- hdu4507 数位dp+推公式
推公式的能力需要锻炼.. /* dp的时候要存结构体 里面三个元素: cnt,就是满足条件的个数 sum1,就是满足条件的数字和 sum2,满足条件的数字平方和 推导过程:还是用记忆化搜索模板 dp[ ...
- 【HDU4507】恨7不成妻
Description 单身! 依然单身! 吉哥依然单身! DS级码农吉哥依然单身! 所以,他生平最恨情人节,不管是214还是77,他都讨厌! 吉哥观察了214和77这两个数,发现: 2+1+4=7 ...
- hdu-4507 吉哥系列故事——恨7不成妻 数位DP 状态转移分析/极限取模
http://acm.hdu.edu.cn/showproblem.php?pid=4507 求[L,R]中不满足任意条件的数的平方和mod 1e9+7. 条件: 1.整数中某一位是7:2.整数的每一 ...
- 2018.09.27 hdu4507吉哥系列故事——恨7不成妻(数位dp)
传送门 一道比较综合的数位dp. 维护三个值:[L,R][L,R][L,R] 区间中与7无关的数的数量,与7无关的数之和,与7无关的数的的平方和. 然后可以用第一个值推第二个,第一个和第二个值推第三个 ...
- 【hdu4507】吉哥系列故事——恨7不成妻 数位dp
题目描述 求 $[L,R]$ 内满足:数位中不包含7.数位之和不是7的倍数.本身不是7的倍数 的所有数的平方和 mod $10^9+7$ . 输入 输入数据的第一行是case数T(1 <= T ...
- 【HDU4507】恨7不成妻(数位DP)
点此看题面 大致题意: 让你求出一段区间内与\(7\)无关的数的平方和.与\(7\)无关的数指整数中任意一位不为\(7\).整数的每一位加起来的和不是\(7\)的整数倍.这个整数不是\(7\)的倍数. ...
- hdu4507(数位DP)
题目意思: 给定一个区间,求这段区间中,不含7,对7取余为0,各个位数相加之和对7取余为0的数的平方和. 设d[i][j][k][m]代表长度为i的,对7取余为j的,各个位数相加之和对7取余为k的数的 ...
随机推荐
- TNS-12541,TNS-12560,TNS-00511,TNS-12542,TNS-12560,TNS-00512数据库启动监听报错
第 1章 数据库server监听错误 1.1.1数据库监听错误 1.1.1.1 问题及现象 server环境为ORACLE11G RAC环境,系统启动后,监听没起来. [oracle@RAC4 ~ ...
- Web 开发中 9 个有用的提示和技巧
在本文中,我们给出 9 个有用的 HTML.CSS 和 JavaScript 的技巧和提示,可能在做 Web 开发中经常会需要用到的,其中有几个是关于 HTML5 和 CSS3 的,如果你是一个前端开 ...
- CentOS 安装nload(流量统计)
yum install gcc gcc-c++ ncurses-devel wget http://www.roland-riegel.de/nload/nload-0.7.2.tar.gz tar ...
- C#获取变量名的扩展方法
// </summary> /// <param name="var_name"></param> /// <param name=&qu ...
- css 的z-index研究
z-index的值受position影响,而且还受父级元素影响.有很多种情况.下面是我看的一个特别全的网址,讲的很详细,收藏了,以后温故用. 对应的例子页面:http://www.neoease.co ...
- SQL 时间格式化函数
1 取值后格式化 {0:d}小型:如2005-5-6 {0:D}大型:如2005年5月6日 {0:f}完整型 2 当前时间获取 DateTime.Now.ToShortDateString 3 取值中 ...
- 经典 SQL
经典sql 总结一些经常用到或碰到的SQL语句,希望能与大家分享,同时也希望大家能提供更多的精妙SQL语句..... 1.delete table1 from (select * from tab ...
- EXT属性
Extjs & Ext.Net 弹出整个浏览器对话框的方法 top.Ext.Msg.alert("值"); top.Ext.Msg.confirm("值" ...
- Linux自制离线源,利用百度网盘等下载离线资源
CentOS安装Axel: 目前yum源上没有Axel,我们可以到http://pkgs.repoforge.org/axel/下载rpm包安装. 32位CentOS执行下面命令: wget -c h ...
- BestCoder Round #75 1001 - King's Cake
Problem Description It is the king's birthday before the military parade . The ministers prepared a ...