hdu 3853 LOOPS(概率 dp 期望)
Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS.
The planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+, c)), the grid on the right of G (grid(r, c+)), or even G itself at respective probability (How evil the Boss Incubator is)!
At the beginning Homura is in the top left corner of the LOOPS ((, )), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power she need to escape from the LOOPS.
The first line contains two integers R and C ( <= R, C <= ). The following R lines, each contains C* real numbers, at decimal places. Every three numbers make a group. The first, second and third number of the cth group of line r represent the probability of transportation to grid (r, c), grid (r, c+), grid (r+, c) of the portal in grid (r, c) respectively. Two groups of numbers are separated by spaces. It is ensured that the sum of three numbers in each group is , and the second numbers of the rightmost groups are (as there are no grids on the right of them) while the third numbers of the downmost groups are (as there are no grids below them). You may ignore the last three numbers of the input data. They are printed just for looking neat. The answer is ensured no greater than . Terminal at EOF
A real number at decimal places (round to), representing the expect magic power Homura need to escape from the LOOPS.
0.00 0.50 0.50 0.50 0.00 0.50
0.50 0.50 0.00 1.00 0.00 0.00
6.000
题意:有一个迷宫r行m列,开始点在[1,1]现在要走到[r,c] ,对于在点[x,y]可以打开一扇门走到[x+1,y]或者[x,y+1] ,消耗2点魔力 ,问平均消耗多少魔力能走到[r,c]
- 分析:假设dp[i][j]表示在点[i,j]到达[r,c]所需要消耗的平均魔力(期望)
- 则从dp[i][j]可以到达:
- dp[i][j],dp[i+1,j],dp[i][j+1];
- 对应概率分别为:
- p1,p2,p3
- 由E(aA+bB+cC...)=aEA+bEB+cEC+...//包含状态A,B,C的期望可以分解子期望求解
- 得到dp[i][j]=p1*dp[i][j]+p2*dp[i+1][j]+p3*dp[i][j+1]+2;
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<stdlib.h>
#include<queue>
#include<cstring>
using namespace std;
#define N 1006
int n,m;
double mp[N][N][];
double dp[N][N];
int main()
{
while(scanf("%d%d",&n,&m)==){
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
for(int k=;k<=;k++){
scanf("%lf",&mp[i][j][k]);
}
}
}
memset(dp,,sizeof(dp));
for(int i=n;i>=;i--){
for(int j=m;j>=;j--){
if(i==n && j==m) continue;//如果是在出口点,则期望值为0
if(mp[i][j][]==1.0) continue;//该点无路可走,期望值肯定为0(dp[i][j]=0)
dp[i][j]=(dp[i][j+]*mp[i][j][]+dp[i+][j]*mp[i][j][]+)/(-mp[i][j][]);
}
}
printf("%.3lf\n",dp[][]);
}
return ;
}
hdu 3853 LOOPS(概率 dp 期望)的更多相关文章
- HDU 3853 LOOPS 概率DP入门
LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)Total Sub ...
- hdu 3853 LOOPS 概率DP
简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...
- hdu 3853 LOOPS (概率dp 逆推求期望)
题目链接 LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)Tota ...
- HDU 3853 LOOP (概率DP求期望)
D - LOOPS Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit St ...
- LOOPS HDU - 3853 (概率dp):(希望通过该文章梳理自己的式子推导)
题意:就是让你从(1,1)走到(r, c)而且每走一格要花2的能量,有三种走法:1,停住.2,向下走一格.3,向右走一格.问在一个网格中所花的期望值. 首先:先把推导动态规划的基本步骤给出来. · 1 ...
- HDU 3853 LOOPS 可能性dp(水
在拐~ #include <stdio.h> #include <cstring> #include <iostream> #include <map> ...
- HDU 3853LOOPS(简单概率DP)
HDU 3853 LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...
- 2017 ICPC Asia Urumqi A.coins (概率DP + 期望)
题目链接:Coins Description Alice and Bob are playing a simple game. They line up a row of nn identical c ...
- luogu P6835 概率DP 期望
luogu P6835 概率DP 期望 洛谷 P6835 原题链接 题意 n + 1个节点,第i个节点都有指向i + 1的一条单向路,现在给他们添加m条边,每条边都从一个节点指向小于等于自己的一个节点 ...
- HDU 3853 LOOPS 期望dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3853 LOOPS Time Limit: 15000/5000 MS (Java/Others)Me ...
随机推荐
- cumber + selenium +java自动化测试
1.新建一个maven项目,pom文件为: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=&quo ...
- IOS 缩放图片常用方法
/** * 指定Size压缩图片 (图片会压缩变形) * * @param image 原图 * @param size 压缩size * * @return 压缩后的图片 */ -(UIImage* ...
- 在Windows7上搭建Cocos2d-x win32开发环境
很多其它相关内容请查看本人博客:http://www.bokeyi.com/ll/category/cocos2d-x/ 建议:为了避免安全相关的问题,请以管理员权限执行全部的操作,当执行命令的时候, ...
- oracle 使用sql获取数据库表,表的字段
--第一种方法: 查询dba_tab_columns select COLUMN_NAME,DATA_TYPE,DATA_LENGTH from dba_tab_columns where t ...
- VMware vSphere 5.5的12个更新亮点(2)
ACPI支持 以前版本的VMware虚拟机的局限性之一,是支持的虚拟设备数量甚少.vSphere 5.5引入了Virtual Hardware 10,这增加了基于SATA的虚拟设备节点,通过AHCI( ...
- JavaScript 函数方法 - toString()
Function.prototype.toString() 返回函数代码的字符串形式. 描述 Function 对象覆盖了从 Object 继承来的 Object.prototype.toString ...
- Java 访问控制符
Java提供了3个访问控制符:private.protected和public,分别代表了3个访问控制级别,另外还有一个不加任何访问控制符的访问控制级别,提供了4个访问控制级别.Java的访问控制级别 ...
- Sql 函数大全 (更新中...由难到简
1.字符处理类: 1.1 指定指定字符输出的次数 ) 结果:1a1a1a1a1a (5个1a)
- Opencv 函数
1.cvLoadImage:将图像文件加载至内存: 2.cvNamedWindow:在屏幕上创建一个窗口: 3.cvShowImage:在一个已创建好的窗口中显示图像: 4.cvWaitKey:使程序 ...
- C#中弹出新窗口
1.在主窗体程序中定义对应别的窗体的对象 Form_a_class form1 = Form_a_class test_delegate(); 2.调用显示 form1.ShowDialog();