Problem Description
Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl).

Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS.

The planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura  magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+, c)), the grid on the right of G (grid(r, c+)), or even G itself at respective probability (How evil the Boss Incubator is)!
At the beginning Homura is in the top left corner of the LOOPS ((, )), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power she need to escape from the LOOPS.

 
Input
The first line contains two integers R and C ( <= R, C <= ).

The following R lines, each contains C* real numbers, at  decimal places. Every three numbers make a group. The first, second and third number of the cth group of line r represent the probability of transportation to grid (r, c), grid (r, c+), grid (r+, c) of the portal in grid (r, c) respectively. Two groups of numbers are separated by  spaces.

It is ensured that the sum of three numbers in each group is , and the second numbers of the rightmost groups are  (as there are no grids on the right of them) while the third numbers of the downmost groups are  (as there are no grids below them).

You may ignore the last three numbers of the input data. They are printed just for looking neat.

The answer is ensured no greater than .

Terminal at EOF
Output
A real number at  decimal places (round to), representing the expect magic power Homura need to escape from the LOOPS.
Sample Input
0.00 0.50 0.50    0.50 0.00 0.50
0.50 0.50 0.00 1.00 0.00 0.00
 
Sample Output
6.000
 
Source
 

题意:有一个迷宫r行m列,开始点在[1,1]现在要走到[r,c] ,对于在点[x,y]可以打开一扇门走到[x+1,y]或者[x,y+1] ,消耗2点魔力 ,问平均消耗多少魔力能走到[r,c]

  1. 分析:假设dp[i][j]表示在点[i,j]到达[r,c]所需要消耗的平均魔力(期望) 
  2. 则从dp[i][j]可以到达: 
  3. dp[i][j],dp[i+1,j],dp[i][j+1]; 
  4. 对应概率分别为: 
  5. p1,p2,p3 
  6. 由E(aA+bB+cC...)=aEA+bEB+cEC+...//包含状态A,B,C的期望可以分解子期望求解  
  7. 得到dp[i][j]=p1*dp[i][j]+p2*dp[i+1][j]+p3*dp[i][j+1]+2;
 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<stdlib.h>
#include<queue>
#include<cstring>
using namespace std;
#define N 1006
int n,m;
double mp[N][N][];
double dp[N][N];
int main()
{
while(scanf("%d%d",&n,&m)==){
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
for(int k=;k<=;k++){
scanf("%lf",&mp[i][j][k]);
}
}
}
memset(dp,,sizeof(dp));
for(int i=n;i>=;i--){
for(int j=m;j>=;j--){
if(i==n && j==m) continue;//如果是在出口点,则期望值为0
if(mp[i][j][]==1.0) continue;//该点无路可走,期望值肯定为0(dp[i][j]=0)
dp[i][j]=(dp[i][j+]*mp[i][j][]+dp[i+][j]*mp[i][j][]+)/(-mp[i][j][]);
}
}
printf("%.3lf\n",dp[][]);
}
return ;
}

hdu 3853 LOOPS(概率 dp 期望)的更多相关文章

  1. HDU 3853 LOOPS 概率DP入门

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total Sub ...

  2. hdu 3853 LOOPS 概率DP

    简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...

  3. hdu 3853 LOOPS (概率dp 逆推求期望)

    题目链接 LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Tota ...

  4. HDU 3853 LOOP (概率DP求期望)

    D - LOOPS Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit St ...

  5. LOOPS HDU - 3853 (概率dp):(希望通过该文章梳理自己的式子推导)

    题意:就是让你从(1,1)走到(r, c)而且每走一格要花2的能量,有三种走法:1,停住.2,向下走一格.3,向右走一格.问在一个网格中所花的期望值. 首先:先把推导动态规划的基本步骤给出来. · 1 ...

  6. HDU 3853 LOOPS 可能性dp(水

    在拐~ #include <stdio.h> #include <cstring> #include <iostream> #include <map> ...

  7. HDU 3853LOOPS(简单概率DP)

    HDU 3853    LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...

  8. 2017 ICPC Asia Urumqi A.coins (概率DP + 期望)

    题目链接:Coins Description Alice and Bob are playing a simple game. They line up a row of nn identical c ...

  9. luogu P6835 概率DP 期望

    luogu P6835 概率DP 期望 洛谷 P6835 原题链接 题意 n + 1个节点,第i个节点都有指向i + 1的一条单向路,现在给他们添加m条边,每条边都从一个节点指向小于等于自己的一个节点 ...

  10. HDU 3853 LOOPS 期望dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3853 LOOPS Time Limit: 15000/5000 MS (Java/Others)Me ...

随机推荐

  1. css中的7中属性选择器

    在CSS的选择符中有七个属性选择符.它们分别是: 1.E[att] 选择具有att属性的E元素. 2.E[att="val"] 选择具有att属性且属性值等于val的E元素. 3. ...

  2. HOG(方向梯度直方图)

    结合这周看的论文,我对这周研究的Histogram of oriented gradients(HOG)谈谈自己的理解: HOG descriptors 是应用在计算机视觉和图像处理领域,用于目标检測 ...

  3. HDU2111 Saving HDU 【贪心】

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  4. unity的坑

    http://dearymz.blog.163.com/blog/static/20565742013341916919/ 编辑器: Hierarchy窗口中是场景中的Game Object列表 Pr ...

  5. 执行eclipse,迅速failed to create the java virtual machine。

    它们必须在一排,否则会出现The Eclipse executable launcher was unable to locate its companion shared library的错误 打开 ...

  6. angular 指令梳理 —— 前端校验

    angular js内置校验的扩展 校验成功则 scope.formName.$valid=true 校验失败  元素的class: ng-invalid 成功:.ng-valid /** * 校验指 ...

  7. dispatch_async 与 dispatch_get_global_queue 的使用方法

    GCD (Grand Central Dispatch) 是Apple公司开发的一种技术,它旨在优化多核环境中的并发操作并取代传统多线程的编程模式. 在Mac OS X 10.6和IOS 4.0之后开 ...

  8. 6 log4j -- 一个笨的使用方法

    log4j的说明: Log4j是Apache的一个开源项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台.文件.GUI组件,甚至是套接口服务器.NT的事件记录器.UNIX Syslog ...

  9. MFC软件工程架构模型-模式窗口-非模式窗口

    1. SDI单文档界面: MDI多文档界面.有多个"关闭-最大化-最小化"等这样的窗口嵌套 基于对话框的软件模型 2.模式对话框和非模式对话框 模式对话框:使用DoMoel(),弹 ...

  10. Qt将表格table保存为excel(odbc方式)

    首先是保存excel的方法,可参照: http://dzmlmszp.blog.163.com/blog/static/179271962014819111812531/ ok,进入正题. 现在我有一 ...