Description

Let’s play a puzzle using eight cubes placed on a 3 × 3 board leaving one empty square.

Faces of cubes are painted with three colors. As a puzzle step, you can roll one of the cubes to a adjacent empty square. Your goal is to make the specified color pattern visible from above by a number of such steps.

The rules of this puzzle are as follows.

  1. Coloring of Cubes: All the cubes area colored in the same way as shown in Figure 1. The opposite faces have the same color.

    Figure 1: Coloring of a cube

  2. Initial Board State: Eight cubes are placed on the 3 × 3 board leaving one empty square. All the cubes have the same orientation as shown in Figure 2. As shown in the figure, squares on the board are given x and y coordinates,
    (1, 1), (1, 2), …, and (3, 3). The position of the initially empty square may vary.

    Figure 2: Initial board state

  3. Rolling Cubes: At each step, we can choose one of the cubes adjacent to the empty square and roll it into the empty square, leaving the original position empty. Figure 3 shows an example.

    Figure 3: Rolling a cube

  4. Goal: The goal of this puzzle is to arrange the cubes so that their top faces form the specified color pattern by a number of cube rolling steps described above.

Your task is to write a program that finds the minimum number of steps required to make the specified color pattern from the given initial state.

Input

The input is a sequence of datasets. The end of the input is indicated by a line containing two zeros separated by a space. The number of datasets is less than 16. Each dataset is formatted as follows.

x y  
F11 F21 F31
F12 F22 F32
F13 F23 F33

The first line contains two integers x and y separated by a space, indicating the position (xy) of the initially empty square. The values of x and y are 1, 2, or 3.

The following three lines specify the color pattern to make. Each line contains three characters F1jF2j, and F3j, separated by a space. Character Fij indicates
the top color of the cube, if any, at the position (ij) as follows:

B: Blue,

W: White,

R: Red,

E: the square is Empty.

There is exactly one ‘E’ character in each dataset.

Output

For each dataset, output the minimum number of steps to achieve the goal, when the goal can be reached within 30 steps. Otherwise, output “-1” for the dataset.

Sample Input

1 2
W W W
E W W
W W W
2 1
R B W
R W W
E W W
3 3
W B W
B R E
R B R
3 3
B W R
B W R
B E R
2 1
B B B
B R B
B R E
1 1
R R R
W W W
R R E
2 1
R R R
B W B
R R E
3 2
R R R
W E W
R R R
0 0

Sample Output

0
3
13
23
29
30
-1
-1

Source

思路:数据太大,先抽象出状态,再哈希一下,然后就是双向BFS。

#include <stdio.h>
#include <string.h>
#include <stack>
using namespace std;
#define INF 99999999 struct{
int step,state;
}t,que1[1000000],que2[1000000]; stack<int>stk; bool vis1[5000007],vis2[5000007];
int top1,top2,bottom1,bottom2,mp[9],nxt[2][7]={{0,4,6,5,1,3,2},{0,5,3,2,6,1,4}},head[5000007],next[5000007],val[5000007],total; int hashval(int x)
{
int t,i; t=x%5000007; for(i=head[t];i!=-1;i=next[i])
{
if(val[i]==x) return i;
} val[total]=x;
next[total]=head[t];
head[t]=total;
total++; return total-1;
} void pushtarget(int cnt,int state)
{
if(cnt==-1)
{
vis2[hashval(state)]=1;
que2[bottom2].step=0;
que2[bottom2].state=state;
bottom2++; return;
} if(mp[cnt]%2)
{
pushtarget(cnt-1,state*7+mp[cnt]);
pushtarget(cnt-1,state*7+mp[cnt]+1);
}
else pushtarget(cnt-1,state*7);
} int getstate()
{
int temp=0; for(int i=8;i>=0;i--)
{
temp=temp*7+mp[i];
} return temp;
} void spread(int x)
{
int i=0,temp,cnt,old; while(i<9)
{
if(x%7==0) cnt=i;
mp[i++]=x%7;
x/=7;
} cnt+=1;
if(cnt>=0 && cnt<9 && cnt%3>0)
{ old=mp[cnt];
mp[cnt-1]=nxt[0][mp[cnt]];
mp[cnt]=0; stk.push(getstate()); mp[cnt]=old;
mp[cnt-1]=0;
}
cnt-=1; cnt-=1;
if(cnt>=0 && cnt<9 && cnt%3<2)
{
old=mp[cnt];
mp[cnt+1]=nxt[0][mp[cnt]];
mp[cnt]=0; stk.push(getstate()); mp[cnt]=old;
mp[cnt+1]=0;
}
cnt+=1; cnt-=3;
if(cnt>=0 && cnt<9)
{
old=mp[cnt];
mp[cnt+3]=nxt[1][mp[cnt]];
mp[cnt]=0; stk.push(getstate()); mp[cnt]=old;
mp[cnt+3]=0;
}
cnt+=3; cnt+=3;
if(cnt>=0 && cnt<9)
{
old=mp[cnt];
mp[cnt-3]=nxt[1][mp[cnt]];
mp[cnt]=0; stk.push(getstate()); mp[cnt]=old;
mp[cnt-3]=0;
}
cnt-=3;
} int bfs()
{
int step1=0,step2=0,ans=INF,temp; for(step1=0;step1<=20;step1++)
{ while(top1<bottom1 && que1[top1].step==step1)
{
spread(que1[top1].state); while(!stk.empty())
{
temp=stk.top();
stk.pop(); if(vis2[hashval(temp)])
{
return step1+step2+1;
} if(!vis1[hashval(temp)])
{
vis1[hashval(temp)]=1;
que1[bottom1].state=temp;
que1[bottom1].step=que1[top1].step+1; bottom1++;
}
} top1++;
} while(top2<bottom2 && que2[top2].step==step2 && step2<9)
{
spread(que2[top2].state); while(!stk.empty())
{
temp=stk.top();
stk.pop(); if(vis1[hashval(temp)]) return step1+step2+2; if(!vis2[hashval(temp)])
{
vis2[hashval(temp)]=1;
que2[bottom2].state=temp;
que2[bottom2].step=step2+1; bottom2++;
}
} top2++;
} if(step2<9) step2++;
} return -1;
} int main()
{
int x,y,i,j,temp;
char ctemp; while(~scanf("%d%d",&y,&x) && x)
{
x--;
y--; top1=top2=bottom1=bottom2=0; memset(vis1,0,sizeof vis1);
memset(vis2,0,sizeof vis2);
memset(head,-1,sizeof head); total=0; while(!stk.empty()) stk.pop(); for(i=0;i<9;i++)
{
ctemp=getchar(); if(ctemp=='\n' || ctemp==' ')
{
i--;
continue;
} if(ctemp=='W')mp[i]=1;
else if(ctemp=='B') mp[i]=3;
else if(ctemp=='R') mp[i]=5;
else if(ctemp=='E') mp[i]=0;
} pushtarget(8,0); temp=0;
for(i=8;i>=0;i--)
{
if(i!=x*3+y) temp=temp*7+1;
else temp*=7;
} if(vis2[hashval(temp)])
{
printf("0\n");
continue;
} vis1[hashval(temp)]=1; que1[bottom1].step=0;
que1[bottom1].state=temp;
bottom1++; printf("%d\n",bfs());
}
}

POJ-3131-Cubic Eight-Puzzle(双向BFS+哈希)的更多相关文章

  1. UVA-1604 Cubic Eight-Puzzle (双向BFS+状态压缩+限制搜索层数)

    题目大意:立体的八数码问题,一次操作是滚动一次方块,问从初始状态到目标状态的最少滚动次数. 题目分析:这道题已知初始状态和目标状态,且又状态数目庞大,适宜用双向BFS.每个小方块有6种状态,整个大方格 ...

  2. poj 3131 Cubic Eight-Puzzle 双向广搜 Hash判重

    挺不错的题目,很锻炼代码能力和调试能力~ 题意:初始格子状态固定,给你移动后格子的状态,问最少需要多少步能到达,如果步数大于30,输出-1. 由于单向搜索状态太多,搜到二十几就会爆了,所以应该想到双向 ...

  3. POJ 1915 经典马步 双向bfs

    拿这个经典题目开刀...........可是双向时间优势在这题上的效果不太明显 #include <iostream> #include <algorithm> #includ ...

  4. Eight (HDU - 1043|POJ - 1077)(A* | 双向bfs+康拓展开)

    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've see ...

  5. POJ 3170 Knights of Ni (暴力,双向BFS)

    题意:一个人要从2先走到4再走到3,计算最少路径. 析:其实这个题很水的,就是要注意,在没有到4之前是不能经过3的,一点要注意.其他的就比较简单了,就是一个双向BFS,先从2搜到4,再从3到搜到4, ...

  6. POJ 3126 Prime Path 解题报告(BFS & 双向BFS)

    题目大意:给定一个4位素数,一个目标4位素数.每次变换一位,保证变换后依然是素数,求变换到目标素数的最小步数. 解题报告:直接用最短路. 枚举1000-10000所有素数,如果素数A交换一位可以得到素 ...

  7. POJ 1915-Knight Moves (单向BFS &amp;&amp; 双向BFS 比)

    主题链接:Knight Moves 题意:8个方向的 马跳式走法 ,已知起点 和终点,求最短路 研究了一下双向BFS,不是非常难,和普通的BFS一样.双向BFS只是是从 起点和终点同一时候開始搜索,可 ...

  8. [poj] 2549 Sumsets || 双向bfs

    原题 在集合里找到a+b+c=d的最大的d. 显然枚举a,b,c不行,所以将式子移项为a+b=d-c,然后双向bfs,meet int the middle. #include<cstdio&g ...

  9. POJ——3126Prime Path(双向BFS+素数筛打表)

    Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16272   Accepted: 9195 Descr ...

随机推荐

  1. PHP高并发的解决方案

    这几天面试,被问到这样一个问题:如何解决大流量的高并发问题.起初不知所措,在查阅相关资料,以及网上大牛们的解答之后,总结出以下几点: 1.服务器,如果同时访问量超过10W的话,需要采用专用服务器来承载 ...

  2. 如何远程备份sql server数据库

      方法一(不使用SQLDMO): /// ///备份方法 /// SqlConnection conn = new SqlConnection("Server=.;Database=mas ...

  3. MapReduce的InputFormat过程的学习

    转自:http://blog.csdn.net/androidlushangderen/article/details/41114259 昨天经过几个小时的学习,把MapReduce的第一个阶段的过程 ...

  4. 深入分析jquery解析json数据

    我们先以解析上例中的comments对象的JSON数据为例,然后再小结jQuery中解析JSON数据的方法. JSON数据如下,是一个嵌套JSON: {"comments":[{& ...

  5. Mac 安装Jupyter notebook

    python:mac下自带Python 2.7.10 1.先升级了pip安装工具:sudo python -m pip install --upgrade --force pip 2.安装setupt ...

  6. python+selenium之简单介绍继承

    python+selenium之简单介绍继承 一.此例简单的介绍一下继承 1.面向对象的编程带来的主要好处之一是代码的重用,实现这种重用的方法之一是通过继承机制.继承完全可以理解成类之间的类型和子类型 ...

  7. docker实用命名

    删除tag/镜像: #删除tag docker rmi index-dev.qiniu.io/cs-kirk/nginx:latest docker rmi index-dev.qiniu.io/cs ...

  8. sqlserver 安全

    1.将数据库的用户名和密码加密保存,使用加密传输.2.将数据库里面的用户除了这个用户所有的用户都禁用,把该用户的密码改的很复杂,很难破解那种3.设置数据库的可连接方式(所有的方式的设置).4.删除数据 ...

  9. ios 开发之 -- UILabel的text竖行显示

    让UILabel的内容竖行显示,我经常用一下两种方式: 第一种:使用换行符 \n label.text = @"请\n竖\n直\n方\n向\n排\n列"; label.number ...

  10. C语言数组的概念

    在<C语言数据输出大汇总以及轻量进阶>一节中我们举了一个例子,是输出一个 4×4 的整数矩阵,代码如下: #include <stdio.h> #include <std ...