https://vjudge.net/problem/UVA-11149

题意:

输入一个n×n矩阵A,计算A+A^2+A^3+...A^k的值。

思路:

矩阵倍增法。

处理方法如下,一直化简下去直到变成A。

代码如下:

 Matrix solve(Matrix base,int x)
{
if(x==)return base;
Matrix temp=solve(base,x/);
Matrix sum=add(temp,multi(pow(base,x/),temp));
if(x&)
sum=add(pow(base,x),sum);
return sum;
}
 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
using namespace std; const int maxn=+;
const int MOD=; int n,k; struct Matrix
{
int mat[maxn][maxn];
}base; Matrix multi(Matrix a,Matrix b)
{
Matrix temp;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
temp.mat[i][j]=;
for(int k=;k<n;k++)
temp.mat[i][j]=(temp.mat[i][j]+a.mat[i][k]*b.mat[k][j])%MOD;
}
return temp;
} Matrix pow(Matrix a,int x)
{
Matrix res;
memset(res.mat,,sizeof(res.mat));
for(int i=;i<n;i++) res.mat[i][i]=;
while(x)
{
if(x&) res=multi(res,a);
a=multi(a,a);
x>>=;
}
return res;
} Matrix add(Matrix a,Matrix b)
{
Matrix temp;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
temp.mat[i][j]=(a.mat[i][j]+b.mat[i][j])%MOD;
return temp;
} Matrix solve(Matrix base,int x)
{
if(x==)return base;
Matrix temp=solve(base,x/);
Matrix sum=add(temp,multi(pow(base,x/),temp));
if(x&)
sum=add(pow(base,x),sum);
return sum;
} int main()
{
//freopen("D:\\input.txt","r",stdin);
while(~scanf("%d%d",&n,&k) &&n)
{
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
scanf("%d",&base.mat[i][j]);
base.mat[i][j]%=MOD;
}
Matrix ans=solve(base,k);
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
if(j) printf(" ");
printf("%d",ans.mat[i][j]);
}
printf("\n");
}
printf("\n");
}
return ;
}

UVa 11149 矩阵的幂(矩阵倍增法模板题)的更多相关文章

  1. UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)

    题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...

  2. UVa 11149 Power of Matrix(倍增法、矩阵快速幂)

    题目链接: 传送门 Power of Matrix Time Limit: 3000MS      Description 给一个n阶方阵,求A1+A2+A3+......Ak. 思路 A1+A2+. ...

  3. UVA 11149 - Power of Matrix(矩阵乘法)

    UVA 11149 - Power of Matrix 题目链接 题意:给定一个n*n的矩阵A和k,求∑kiAi 思路:利用倍增去搞.∑kiAi=(1+Ak/2)∑k/2iAi,不断二分就可以 代码: ...

  4. 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化

    B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...

  5. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  6. [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)

    Cellular Automaton Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 3048   Accepted: 12 ...

  7. POJ 3734 Blocks(矩阵快速幂+矩阵递推式)

    题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 .   设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数 ...

  8. lightoj 1096【矩阵快速幂(作为以后的模板)】

    基础矩阵快速幂何必看题解 #include <bits/stdc++.h> using namespace std; /* 0 1 2 3 4 5 6 7 0 0 0 */ const i ...

  9. 矩阵快速幂/矩阵加速线性数列 By cellur925

    讲快速幂的时候就提到矩阵快速幂了啊,知道是个好东西,但是因为当时太蒟(现在依然)没听懂.现在把它补上. 一.矩阵快速幂 首先我们来说说矩阵.在计算机中,矩阵通常都是用二维数组来存的.矩阵加减法比较简单 ...

随机推荐

  1. 前端开发 - JavaScript - 总结

    一.JavaScript的特征 javaScript是一种web前端的描述语言,也是一种基于对象(object)和事件驱动(Event Driven)的.安全性好的脚本语言.它运行在客户端从而减轻服务 ...

  2. linux知识体系

    0. Linux简介与厂商版本 1. Linux开机启动 2. Linux文件管理 3. Linux的架构 4. Linux命令行与命令 5. Linux文件管理相关命令 6. Linux文本流 7. ...

  3. MySQL协议分析(2)

    MySQL协议分析(2) 此阶段是在压缩传输无加密条件下进行的协议分析 思路 结合Oracle官网的说明和自己用wireshark加python进行数据包分析 步骤 客户端与服务器端是否压缩的协商阶段 ...

  4. Linux_Vi_命令

    Linux Vi 命令 ************************************************************************* 在vi中使用命令的方法是:冒 ...

  5. UVALive - 7740 Coding Contest 2016 青岛区域赛 (费用流)

    题意:每个点i有\(s_i\)个人和\(b_i\)份食物,每个人都要找到一份食物.现在有M条有向边,从点i到点j,容量为c,第一次走过不要紧,从第二次开始就要承担\(p(0<p<1)\)的 ...

  6. 【Linux学习】2.Linux常见命令行

    记录学习Linux 系统的相关知识点,欢迎大家拍砖交流,一起成长:QQ:2712192471 作者背景:前端开发工程师 | Python | web安全爱好者   Linux命令行: 系统关机重启 s ...

  7. 【Linux学习】1.Linux基础知识

    记录学习Linux 系统的相关知识点,欢迎大家拍砖交流,一起成长:QQ:2712192471 作者背景:前端开发工程师 | Python | web安全爱好者 一,Windows系统下 Linux 的 ...

  8. 在DLL编程中,导出函数为什么需要extern "C"

    转自:http://blog.csdn.net/zhongjling/article/details/8088664 一般来讲,在DLL编程过程中,对于导出的函数前 都需要加入 extern “C”, ...

  9. window连接linux共享

    前提说明:windows主机信息:192.168.1.100 帐号:abc 密码:123 共享文件夹:sharelinux主机信息:192.168.1.200 帐号:def 密码:456 共享文件夹: ...

  10. 20145321 《Java程序设计》课程总结

    20145321 <Java程序设计>课程总结 读书笔记链接汇总 第一周读书笔记 第二周读书笔记 第三周读书笔记 第四周读书笔记 第五周读书笔记 第六周读书笔记 第七周读书笔记 第八周读书 ...