[POJ3370]&[HDU1808]Halloween treats

Description

-Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts, the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.

Your job is to help the children and present a solution.

-Input:The input contains several test cases.

The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit neighbour i.

The last test case is followed by two zeros.

-Output:

For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets). If there is no solution where each child gets at least one sweet print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.

Solution

1.本题与Find a multiple(题解随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/8481478.html)基本相同,只需多组数据处理,数据一定要先全部读完再处理;

2.由于n<m,那么至少有两个邻居给的糖果数前缀和关于孩子数同余,取模后相同的前缀和后出现的地址减去前面的地址即可;

3.打一个地址标记,记录模值的第一次出现地址,当第二次出现同一模后前缀和时,使l=第一次出现地址,r=第二次出现地址,区间[l,r]即为所求,注意题目要求输出的是可能的一组地址;

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int i,j,l,r,t[100001]={},a[100001]={},sum[100001]={};
void cul(int n,int m){ //分组处理数据;
l=0;
memset(t,-1,sizeof(t));
memset(a,0,sizeof(a));
memset(sum,0,sizeof(sum));
t[0]=0;
for(i=1;i<=m;++i) scanf("%d",&a[i]);
for(i=1;i<=m;++i){
sum[i]=(sum[i-1]+a[i])%n;
if(t[sum[i]]!=-1){
l=t[sum[i]];
r=i;
break;
}
else t[sum[i]]=i; //计录模值首次出现的地址;
}
for(i=l+1;i<=r;++i)printf("%d ",i); //注意输出地址;
printf("\n");
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
while(n!=0){
cul(n,m);
scanf("%d%d",&n,&m);
}
return 0;
}

有关鸽巢原理可以参考我的博客:http://www.cnblogs.com/COLIN-LIGHTNING/p/8439555.html

[POJ3370]&[HDU1808]Halloween treats 题解(鸽巢原理)的更多相关文章

  1. POJ3370&amp;HDU1808 Halloween treats【鸽巢原理】

    题目链接: id=3370">http://poj.org/problem?id=3370 http://acm.hdu.edu.cn/showproblem.php?pid=1808 ...

  2. POJ 3370 Halloween treats( 鸽巢原理简单题 )

    链接:传送门 题意:万圣节到了,有 c 个小朋友向 n 个住户要糖果,根据以往的经验,第i个住户会给他们a[ i ]颗糖果,但是为了和谐起见,小朋友们决定要来的糖果要能平分,所以他们只会选择一部分住户 ...

  3. poj 3370 Halloween treats(鸽巢原理)

    Description Every year there is the same problem at Halloween: Each neighbour is only willing to giv ...

  4. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  5. POJ 3370 Halloween treats 鸽巢原理 解题

    Halloween treats 和POJ2356差点儿相同. 事实上这种数列能够有非常多,也能够有不连续的,只是利用鸽巢原理就是方便找到了连续的数列.并且有这种数列也必然能够找到. #include ...

  6. [HDU1205]吃糖果 题解(鸽巢原理)

    [HDU1205]吃糖果 Description -HOHO,终于从Speakless手上赢走了所有的糖果,是Gardon吃糖果时有个特殊的癖好,就是不喜欢将一样的糖果放在一起吃,喜欢先吃一种,下一次 ...

  7. [POJ2356]Find a multiple 题解(鸽巢原理)

    [POJ2356]Find a multiple Description -The input contains N natural (i.e. positive integer) numbers ( ...

  8. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  9. poj2356 Find a multiple(抽屉原理|鸽巢原理)

    /* 引用过来的 题意: 给出N个数,问其中是否存在M个数使其满足M个数的和是N的倍数,如果有多组解, 随意输出一组即可.若不存在,输出 0. 题解: 首先必须声明的一点是本题是一定是有解的.原理根据 ...

随机推荐

  1. 【第二周】【作业五】Scrum 每日站会

    1.首先来看一下什么是Scrum: Scrum是一种敏捷软件开发的方法学,用于迭代式增量软件开发过程.Scrum在英语是橄榄球运动中争球的意思. 虽然Scrum是为管理软件开发项目而开发的,它同样可以 ...

  2. oracle 查询优化及sql改写

    ORACLE有个高速缓冲的概念,这个高速缓冲就是存放执行过的SQL语句,那oracle在执行sql语句的时候要做很多工作,例如解析sql语句,估算索引利用率,绑定变量,读取数据块等等这些操作.假设高速 ...

  3. Importing/Indexing database (MySQL or SQL Server) in Solr using Data Import Handler--转载

    原文地址:https://gist.github.com/maxivak/3e3ee1fca32f3949f052 Install Solr download and install Solr fro ...

  4. 秒杀多线程第七篇 经典线程同步 互斥量Mutex(续)

    java使用Synchronized关键字实现互斥,而同时有Lock支持. 这两个的效果是等同的,Synchronized性能的起伏较大,而lock比较收敛. 为了代码的可读性,Synchronize ...

  5. ORZ hzwer——OI省选算法汇总

    简单列了一点 1.1 基本数据结构 1. 数组 2. 链表,双向链表 3. 队列,单调队列,双端队列 4. 栈,单调栈 1.2 中级数据结构 1. 堆 2. 并查集与带权并查集 3. hash 表 自 ...

  6. CF 566A Matching Names

    CF 566A Matching Names 题目描述 给出n个名字和n个昵称,求一个名字和昵称的劈配方案,使得被劈配的名字和昵称的最长公共前缀长度的和最大. 1<=n<=100000 字 ...

  7. Linux内核分析第七周学习笔记——Linux内核如何装载和启动一个可执行程序

    Linux内核分析第七周学习笔记--Linux内核如何装载和启动一个可执行程序 zl + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study. ...

  8. scala(二)

    一.映射 1.Scala映射就是键值对的集合Map.默认情况下,Scala中使用不可变的映射. 如果想使用可变集合Map,必须导入scala.collection.mutable.Map    (导包 ...

  9. 解题:BOI 2008 Elect

    题面 做背包时可以通过排序来使得转移满足某种限制或是让我们判断一个状态是否有贡献 这个题将人数从大到小排序后做背包,这样每次那个最小的党加入而使得答案合法时之前的党也都是合法的 #include< ...

  10. dom4j之selectSingleNode方法

    dom4j之selectSingleNode方法 2017年12月18日 15:10:18 xclsky1120 阅读数:2043   版权声明:本文为博主原创文章,未经博主允许不得转载. https ...