背景

分布式的集群通常包含非常多的机器,由于受到机架槽位和交换机网口的限制,通常大型的分布式集群都会跨好几个机架,由多个机架上的机器共同组成一个分布式集群。机架内的机器之间的网络速度通常都会高于跨机架机器之间的网络速度,并且机架之间机器的网络通信通常受到上层交换机间网络带宽的限制。

具体到Hadoop集群,由于hadoop的HDFS对数据文件的分布式存放是按照分块block存储,每个block会有多个副本(默认为3),并且为了数据的安全和高效,所以hadoop默认对3个副本的存放策略为:

第一个block副本放在和client所在的node里(如果client不在集群范围内,则这第一个node是随机选取的)。

第二个副本放置在与第一个节点不同的机架中的node中(随机选择)。

第三个副本似乎放置在与第一个副本所在节点同一机架的另一个节点上

如果还有更多的副本就随机放在集群的node里。

这样的策略可以保证对该block所属文件的访问能够优先在本rack下找到,如果整个rack发生了异常,也可以在另外的rack上找到该block的副本。这样足够的高效,并且同时做到了数据的容错。

但是,hadoop对机架的感知并非是自适应的,亦即,hadoop集群分辨某台slave机器是属于哪个rack并非是只能的感知的,而是需要hadoop的管理者人为的告知hadoop哪台机器属于哪个rack,这样在hadoop的namenode启动初始化时,会将这些机器与rack的对应信息保存在内存中,用来作为对接下来所有的HDFS的写块操作分配datanode列表时(比如3个block对应三台datanode)的选择datanode策略,做到hadoop allocate block的策略:尽量将三个副本分布到不同的rack。     接下来的问题就是:通过什么方式能够告知hadoop namenode哪些slaves机器属于哪个rack?以下是配置步骤。

配置

默认情况下,hadoop的机架感知是没有被启用的。所以,在通常情况下,hadoop集群的HDFS在选机器的时候,是随机选择的,也就是说,很有可能在写数据时,hadoop将第一块数据block1写到了rack1上,然后随机的选择下将block2写入到了rack2下,此时两个rack之间产生了数据传输的流量,再接下来,在随机的情况下,又将block3重新又写回了rack1,此时,两个rack之间又产生了一次数据流量。在job处理的数据量非常的大,或者往hadoop推送的数据量非常大的时候,这种情况会造成rack之间的网络流量成倍的上升,成为性能的瓶颈,进而影响作业的性能以至于整个集群的服务。     要将hadoop机架感知的功能启用,配置非常简单,在namenode所在机器的hadoop-site.xml配置文件中配置一个选项:

<property>
<name>topology.script.file.name</name>
<value>/path/to/RackAware.py</value>
</property

这个配置选项的value指定为一个可执行程序,通常为一个脚本,该脚本接受一个参数,输出一个值。接受的参数通常为某台datanode机器的ip地址,而输出的值通常为该ip地址对应的datanode所在的rack,例如”/rack1”。Namenode启动时,会判断该配置选项是否为空,如果非空,则表示已经用机架感知的配置,此时namenode会根据配置寻找该脚本,并在接收到每一个datanode的heartbeat时,将该datanode的ip地址作为参数传给该脚本运行,并将得到的输出作为该datanode所属的机架,保存到内存的一个map中。

至于脚本的编写,就需要将真实的网络拓朴和机架信息了解清楚后,通过该脚本能够将机器的ip地址正确的映射到相应的机架上去。一个简单的实现如下:

#!/usr/bin/python
#-*-coding:UTF-8 -*-
import sys rack = {"hadoopnode-176.tj":"rack1",
"hadoopnode-178.tj":"rack1",
"hadoopnode-179.tj":"rack1",
"hadoopnode-180.tj":"rack1",
"hadoopnode-186.tj":"rack2",
"hadoopnode-187.tj":"rack2",
"hadoopnode-188.tj":"rack2",
"hadoopnode-190.tj":"rack2",
"192.168.1.15":"rack1",
"192.168.1.17":"rack1",
"192.168.1.18":"rack1",
"192.168.1.19":"rack1",
"192.168.1.25":"rack2",
"192.168.1.26":"rack2",
"192.168.1.27":"rack2",
"192.168.1.29":"rack2",
} if __name__=="__main__":
print "/" + rack.get(sys.argv[1],"rack0")

由于没有找到确切的文档说明 到底是主机名还是ip地址会被传入到脚本,所以在脚本中最好兼容主机名和ip地址,如果机房架构比较复杂的话,脚本可以返回如:/dc1/rack1 类似的字符串。

执行命令:chmod +x RackAware.py

重启namenode,如果配置成功,namenode启动日志中会输出:

2011-12-21 14:28:44,495 INFO org.apache.hadoop.net.NetworkTopology: Adding a new node: /rack1/192.168.1.15:50010  

网络拓扑机器之间的距离

这里基于一个网络拓扑案例,介绍在复杂的网络拓扑中hadoop集群每台机器之间的距离

 

有了机架感知,NameNode就可以画出上图所示的datanode网络拓扑图。D1,R1都是交换机,最底层是datanode。则H1的rackid=/D1/R1/H1,H1的parent是R1,R1的是D1。这些rackid信息可以通过topology.script.file.name配置。有了这些rackid信息就可以计算出任意两台datanode之间的距离。

distance(/D1/R1/H1,/D1/R1/H1)=0  相同的datanode
distance(/D1/R1/H1,/D1/R1/H2)=2 同一rack下的不同datanode
distance(/D1/R1/H1,/D1/R1/H4)=4 同一IDC下的不同datanode
distance(/D1/R1/H1,/D2/R3/H7)=6 不同IDC下的datanode

第十三章 hadoop机架感知的更多相关文章

  1. 【转载】Hadoop机架感知

    转载自http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2843015.html 背景 分布式的集群通常包含非常多的机器,由于受到机架槽位和交换机 ...

  2. hadoop机架感知

    背景 分布式的集群通常包含非常多的机器,由于受到机架槽位和交换机网口的限制,通常大型的分布式集群都会跨好几个机架,由多个机架上的机器共同组成一个分布式集群.机架内的机器之间的网络速度通常都会高于跨机架 ...

  3. hadoop之 hadoop 机架感知

    1.背景 Hadoop在设计时考虑到数据的安全与高效,数据文件默认在HDFS上存放三份,存储策略为本地一份,同机架内其它某一节点上一份,不同机架的某一节点上一份.这样如果本地数据损坏,节点可以从同一机 ...

  4. 【Hadoop】Hadoop 机架感知配置、原理

    Hadoop机架感知 1.背景 Hadoop在设计时考虑到数据的安全与高效,数据文件默认在HDFS上存放三份,存储策略为本地一份, 同机架内其它某一节点上一份,不同机架的某一节点上一份. 这样如果本地 ...

  5. 【原创】Hadoop机架感知对性能调优的理解

    Hadoop作为大数据处理的典型平台,在海量数据处理过程中,其主要限制因素是节点之间的数据传输速率.因为集群的带宽有限,而有限的带宽资源却承担着大量的刚性带宽需求,例如Shuffle阶段的数据传输不可 ...

  6. Hadoop hadoop 机架感知配置

    机架感知脚本 使用python3编写机架感知脚本,报存到topology.py,给予执行权限 import sys import os DEFAULT_RACK="/default-rack ...

  7. hadoop机架感知与网络拓扑分析:NetworkTopology和DNSToSwitchMapping

    hadoop网络拓扑结构在整个系统中具有很重要的作用,它会影响DataNode的启动(注册).MapTask的分配等等.了解网络拓扑对了解整个hadoop的运行会有很大帮助. 首先通过下面两个图来了解 ...

  8. hadoop(三):hdfs 机架感知

    client 向 Active NN 发送写请求时,NN为这些数据分配DN地址,HDFS文件块副本的放置对于系统整体的可靠性和性能有关键性影响.一个简单但非优化的副本放置策略是,把副本分别放在不同机架 ...

  9. 实现hadoop中的机架感知

    hadoop中声明是有机架感知的功能,能够提高hadoop的性能.平时我们使用的hadoop集群,实际上是从来没有使用上这个功能的. hadoop中所说的 机架感知的实现实际上这样的: hadoop启 ...

随机推荐

  1. Windows平台编程涉及的函数

    VirtualAlloc 调用进程的虚拟地址空间 GetTickCount 返回从操作系统启动到当前所经历过的毫秒数 malloc.h内存分配函数,需要头文件malloc.h

  2. Appium 测试APK

    介绍 Appium是一个开源.跨平台的测试框架,可以用来测试原生及混合的移动端应用.Appium支持iOS.Android及FirefoxOS平台测试.Appium使用WebDriver的json w ...

  3. asp.net设置gridview页码显示遇到的问题

    问题:分页部分显示的页码撑开占满整个表格底部 解决方法: 1.通过浏览器察看源,发现是分页部分的table样式受到整个页面的table设置的样式的影响,分页是一个tr里面的td里面的table 2.设 ...

  4. 基于AMBA总线的SPI协议IP核的设计与验证

    https://wenku.baidu.com/view/9542213131126edb6f1a1048.html?mark_pay_doc=2&mark_rec_page=1&ma ...

  5. js的事件循环机制和任务队列

    上篇讲异步的时候,提到了同步队列和异步队列的说法,其实只是一种形象的称呼,分别代表主线程中的任务和任务队列中的任务,那么此篇我们就来详细探讨这两者. 一.来张图感受一下 如果看完觉得一脸懵逼,请继续往 ...

  6. 循环中的let和const声明

    一.循环中的let声明 每次循环的时候let声明都会创建一个新变量i,并将其初始化为i的当前值,所以循环内部创建的每个函数都能得到属于他们的i的副本. 最初的: for (var i = 0 ; i ...

  7. 《Drools7.0.0.Final规则引擎教程》Springboot+规则重新加载

    在<Drools7.0.0.Final规则引擎教程>之Springboot集成中介绍了怎样将Drools与Springboot进行集成,本篇博客介绍一下集成之后,如何实现从数据库读取规则并 ...

  8. java.io.IOException: Unable to establish loopback connection

    1.错误描述 Starting preview server on port 8080 Modules: HTML5 (/HTML5) 2017-06-17 11:13:04.823:INFO::ma ...

  9. Emgu cv 学习笔记

    http://www.cnblogs.com/CoverCat/p/5003363.html emgu中imagebox与picturebox imagebox 是emgu   设置好厚,新出现的控件 ...

  10. python的if判断补充

    python的if判断补充 exit_flag = False # 标识符 if exit_flag == False: print('exit_flag == False') exit_flag = ...