题意:略。

思路:网上是用卷积或者做的,不太会。 因为上一题莫比乌斯有个类似的部分,所以想到了每个素因子单独考虑。

我们用C(x^p)表示p次减少分布在K次减少里的方案数,由隔板法可知,C(x^p)=C(K+p-1,K-1);  而且满足C(x)有积性,即gcd(x,y)==1时,有C(x*y)=C(x)*C(y);

所以C数组可以线性筛。 把筛素数的线性筛,稍微改一下即可,low[i]代表的是i的最小素数因子x的p次方,即x^p|i,p最大,num[i]代表的是幂次p。

那么g(x)=Σ f(a)*C(x/a); g数组也可以线性筛。这里相当于手动卷积。

所以C和g函数分别线性筛即可。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
using namespace std;
const int maxn=;
const int Mod=1e9+;
int rev[maxn],f[maxn],ans[maxn],jc[maxn],fz[maxn],p[maxn];
int vis[maxn],low[maxn],num[maxn],C[maxn],cnt,N,K;
int qpow(int a,int x){
int res=; while(x){
if(x&) res=(ll)res*a%Mod;
a=(ll)a*a%Mod; x>>=;
} return res;
}
void getC()
{
cnt=; rep(i,,maxn) low[i]=num[i]=;
for(int i=;i<maxn;i++){
if(!vis[i]) p[++cnt]=i,low[i]=i,num[i]=;
for(int j=;j<=cnt&&i*p[j]<maxn;j++){
vis[i*p[j]]=;
if(i%p[j]==){
low[i*p[j]]=low[i]*p[j];
num[i*p[j]]=num[i]+;
break;
}
low[i*p[j]]=p[j];
num[i*p[j]]=;
}
}
}
int main()
{
jc[]=;rep(i,,maxn-) jc[i]=(ll)jc[i-]*i%Mod;
rev[maxn-]=qpow(jc[maxn-],Mod-);
for(int i=maxn-;i>=;i--) rev[i]=(ll)rev[i+]*(i+)%Mod;
getC();
int T; scanf("%d",&T);
while(T--){
scanf("%d%d",&N,&K);
fz[]=; rep(i,,N) fz[i]=(ll)fz[i-]*(i+K-)%Mod,ans[i]=;
rep(i,,N) scanf("%d",&f[i]);
C[]=;
rep(i,,N) C[i]=(ll)C[i/low[i]]*rev[num[i]]%Mod*fz[num[i]]%Mod;
for(int i=;i<=N;i++){
for(int j=i;j<=N;j+=i)
(ans[j]+=(ll)f[i]*C[j/i]%Mod)%=Mod;
}
rep(i,,N-) printf("%d ",ans[i]);
printf("%d\n",ans[N]);
}
return ;
}

到此,引申一下有个题,给定N<1e7,K<1e9,求1^K+2^K+3^+...N^K。

这里由于K过大,显然不能用拉格朗日插值法。 我们用线性筛来做,如果i是素数,我们就快速幂求f[i]=i^K,否则就用之前的结果就好了,即f[i]=f[low[i]]^f[i/low[i]];

由于素数的个数大约=N/lgN; 而快速幂的复杂度是lgK。所以整个算法差不多是线性的。

HDU - 5628:Clarke and math (组合数&线性筛||迪利克雷卷积)的更多相关文章

  1. HDU 5628 Clarke and math——卷积,dp,组合

    HDU 5628 Clarke and math 本文属于一个总结了一堆做法的玩意...... 题目 简单的一个式子:给定$n,k,f(i)$,求 然后数据范围不重要,重要的是如何优化这个做法. 这个 ...

  2. HDU 5628 Clarke and math dp+数学

    Clarke and math 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5628 Description Clarke is a patient ...

  3. HDU 5628 Clarke and math Dirichlet卷积+快速幂

    题意:bc round 72 中文题面 分析(官方题解): 如果学过Dirichlet卷积的话知道这玩意就是g(n)=(f*1^k)(n), 由于有结合律,所以我们快速幂一下1^k就行了. 当然,强行 ...

  4. HDU.5628.Clarke and math(狄利克雷卷积 快速幂)

    \(Description\) \[g(i)=\sum_{i_1|i}\sum_{i_2|i_1}\sum_{i_3|i_2}\cdots\sum_{i_k|i_{k-1}}f(i_k)\ mod\ ...

  5. bzoj 3309 DZY Loves Math——反演+线性筛

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 像这种数据范围,一般是线性预处理,每个询问 sqrt (数论分块)做. 先反演一番.然 ...

  6. hdu 5648 DZY Loves Math 组合数+深搜(子集法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5648 题意:给定n,m(1<= n,m <= 15,000),求Σgcd(i|j,i&am ...

  7. bzoj 3560 DZY Loves Math V - 线性筛 - 扩展欧几里得算法

    给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). Input 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. Output 仅一行答案. Sampl ...

  8. 【HDU 6428】Calculate 莫比乌斯反演+线性筛

    题解 代码 #include <bits/stdc++.h> using namespace std; typedef long long ll; const ll mod = 1LL&l ...

  9. 【BZOJ3309】DZY Loves Math(线性筛)

    题目: BZOJ 3309 分析: 首先,经过一番非常套路的莫比乌斯反演(实在懒得写了),我们得到: \[\sum_{T=1}^n \sum_{d|T}f(d)\mu(\frac{T}{d})\lfl ...

随机推荐

  1. JavaScript的动态特性(通过eval,call,apply和bind来体现)

    JavaScript的动态特性(通过eval,call,apply和bind来体现) JavaScript是一种基于面向对象的.函数式的.动态的编程语言.现在发展到已经可以用在浏览器和服务器端了. 这 ...

  2. 关于Eclipse SVN 分支 与主干 小结

    SVN建立分支和合并代码 https://blog.csdn.net/luofeixiongsix/article/details/52052631 SVN创建指定版本号的分支 https://blo ...

  3. windows向github提交代码

    随便写的,留给自己看. 一.在github上注册并建立自己的仓库http://www.cnblogs.com/keZhenxu94/p/5288488.html 二.安装windows版本git界面工 ...

  4. php-fpm 与 cgi

    CGI是干嘛的?CGI是为了保证web server传递过来的数据是标准格式的,方便CGI程序的编写者. web server(比如说nginx)只是内容的分发者.比如,如果请求/index.html ...

  5. [Vue]组件——实现动态组件:keep-alive的使用

    1.在app.vue中用一个 <keep-alive> 元素将其动态组件包裹起来: keepAlive为true时,第一次被创建的时候缓存下来,为false时,不会缓存 <keep- ...

  6. 在win7虚拟机中装sql server---待整理

    本科学数据库的时候,为了做作业,需要在自己电脑上装sql server.但是每次都装不上,总是有各种小问题通不过.最后问学长,才采用了在虚拟机里装数据库的方法,在虚拟机中可以不用担心弄乱本机系统. 为 ...

  7. PHP返回32位与16位的md5加密值

    字符串“123456”,经过md5算法加密之后是 32位: e10adc3949ba59abbe56e057f20f883e16位: 49ba59abbe56e057 PHP自带的 md5() 函数, ...

  8. leetcode算法总结

    算法思想 二分查找 贪心思想 双指针 排序 快速选择 堆排序 桶排序 搜索 BFS DFS Backtracking 分治 动态规划 分割整数 矩阵路径 斐波那契数列 最长递增子序列 最长公共子系列 ...

  9. linux下如何安装lua

    1.下载lua包并解压 wget -c http://www.lua.org/ftp/lua-5.3.0.tar.gz  tar zxvf lua-5.3.0.tar.gz 2.下载libreadli ...

  10. mysql too many connections解决方法

    MySQL提示“too many connections”的解决办法   今天生产服务器上的MySQL出现了一个不算太陌生的错误“Too many connections”.平常碰到这个问题,我基本上 ...