【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)
3144: [Hnoi2013]切糕
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1764 Solved: 965Description
Input
第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。Output
仅包含一个整数,表示在合法基础上最小的总不和谐值。
Sample Input
2 2 2
1
6 1
6 1
2 6
2 6Sample Output
6HINT
最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1
Source
这个题是个挺经典的最小割。
这个题的关键是如何限制h之差不超过d。首先我们按高度分层,每层的点向下一层相同位置的点连边,边权设为点权(也就是说我们要多设一层),然后如果我们割掉这条边就意味着选择了下面这个点。然后,对于h之差的限制,我们把k+d层的点向k层的四周的点连+oo边,也就是说如果我们割掉了一条边,就不能选择+oo的边连接的上面的边,因为选择了这条边,如果再选择上面的边的话,就不能构成割了,因为流还是可以经过那条+oo的边流回来。其实类比一下最大权独立集的话,这条+oo的边的意义就是选了某个点以后,就不能选和它相差超过d的点了。
来自:http://www.cnblogs.com/zig-zag/archive/2013/05/13/3076563.html

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 50
#define INF 0xfffffff int mymin(int x,int y) {return x<y?x:y;} int num[Maxn][Maxn][Maxn],v[Maxn][Maxn][Maxn]; struct node
{
int x,y,f,next,o;
}t[Maxn*Maxn*Maxn*];
int len,first[Maxn*Maxn*Maxn]; void ins(int x,int y,int f)
{
t[++len].x=x;t[len].y=y;t[len].f=f;
t[len].next=first[x];first[x]=len;t[len].o=len+;
t[++len].x=y;t[len].y=x;t[len].f=;
t[len].next=first[y];first[y]=len;t[len].o=len-;
} int st,ed;
int dis[Maxn*Maxn*Maxn];
queue<int > q;
bool bfs()
{
for(int i=;i<=ed;i++) dis[i]=-;
while(!q.empty()) q.pop();
dis[st]=;q.push(st);
while(!q.empty())
{
int x=q.front();
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==-)
{
dis[y]=dis[x]+;
q.push(y);
}
}
q.pop();
}
if(dis[ed]==-) return ;
return ;
} int ffind(int x,int flow)
{
if(x==ed) return flow;
int now=;
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==dis[x]+)
{
int a=ffind(y,mymin(flow-now,t[i].f));
t[i].f-=a;
t[t[i].o].f+=a;
now+=a;
}
if(now==flow) break;
}
if(now==) dis[x]=-;
return now;
} void output()
{
for(int i=;i<=len;i+=)
{
printf("%d -> %d %d\n",t[i].x,t[i].y,t[i].f);
}printf("\n");
} int ans=;
void max_flow()
{
while(bfs())
{
ans+=ffind(st,INF);
}
printf("%d\n",ans);
} int main()
{
int n,m,h,d;
scanf("%d%d%d",&n,&m,&h);
scanf("%d",&d);
int cnt=;
st=n*m*h+;ed=st+;
for(int k=;k<=h;k++)
{
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
scanf("%d",&v[i][j][k]);
num[i][j][k]=++cnt;
if(k!=) ins(num[i][j][k-],num[i][j][k],v[i][j][k]);
else ins(st,num[i][j][k],v[i][j][k]);
if(k==h) ins(num[i][j][k],ed,INF);
if(i!=&&k>d) ins(num[i][j][k],num[i-][j][k-d],INF);
if(i!=n&&k>d) ins(num[i][j][k],num[i+][j][k-d],INF);
if(j!=&&k>d) ins(num[i][j][k],num[i][j-][k-d],INF);
if(j!=m&&k>d) ins(num[i][j][k],num[i][j+][k-d],INF);
}
}
max_flow();
return ;
}
2017-03-29 14:57:42
【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)的更多相关文章
- bzoj3144 [HNOI2013]切糕(最小割)
bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...
- Luogu P3227 [HNOI2013]切糕 最小割
首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每 ...
- bzoj 3144: [Hnoi2013]切糕 最小割
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 375[Submit][Status] ...
- 【BZOJ3144】[Hnoi2013]切糕 最小割
[BZOJ3144][Hnoi2013]切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q ...
- BZOJ3144[Hnoi2013]切糕——最小割
题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...
- bzoj 3144 [Hnoi2013]切糕——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...
- BZOJ3144/LG3227 「HNOI2013」切糕 最小割离散变量模型
问题描述 BZOJ3144 LG3227 还想粘下样例 输入: 2 2 2 1 6 1 6 1 2 6 2 6 输出: 6 题解 关于离散变量模型,我不想再抄一遍,所以: 对于样例,可以建立出这样的图 ...
- bzoj 2039 最小割模型
比较明显的网络流最小割模型,对于这种模型我们需要先求获利的和,然后减去代价即可. 我们对于第i个人来说, 如果选他,会耗费A[I]的代价,那么(source,i,a[i])代表选他之后的代价,如果不选 ...
- [BZOJ 3894] 文理分科 【最小割】
题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...
- BZOJ 2768: [JLOI2010]冠军调查 最小割
2768: [JLOI2010]冠军调查 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2768 Description 一年一度的欧洲足 ...
随机推荐
- spring 添加controller返回值绑定
@EnableWebMvc @Configuration public class Config { @Autowired private RequestMappingHandlerAdapter h ...
- 【CodeForces】713 D. Animals and Puzzle 动态规划+二维ST表
[题目]D. Animals and Puzzle [题意]给定n*m的01矩阵,Q次询问某个子矩阵内的最大正方形全1子矩阵边长.n,m<=1000,Q<=10^6. [算法]动态规划DP ...
- Coursera在线学习---第六节.构建机器学习系统
备: High bias(高偏差) 模型会欠拟合 High variance(高方差) 模型会过拟合 正则化参数λ过大造成高偏差,λ过小造成高方差 一.利用训练好的模型做数据预测时,如果效果不好 ...
- 某团队线下赛AWD writeup&Beescms_V4.0代码审计
还是跟上篇一样.拿别人比赛的来玩一下. 0x01 预留后门 连接方式: 0x02 后台登录口SQL注入 admin/login.php 在func.php当中找到定义的check_login函数 很 ...
- numpy 简介
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- Linux kernel学习-内存管理
转自:https://zohead.com/archives/linux-kernel-learning-memory-management/ 本文同步自(如浏览不正常请点击跳转):https://z ...
- 健身VS不健身,完全是两种不同的人生!
这两天一组同龄人合照 刷爆了国内健身圈, 图左是一位67岁的老人, 图右是67岁的健美运动员杨新民老师 相同年龄, 但从外观上有着强烈的距离感! 让多人不禁感叹,健身和不健身, 简直就是两种状态,两种 ...
- 浅析linux内核中timer定时器的生成和sofirq软中断调用流程(转自http://blog.chinaunix.net/uid-20564848-id-73480.html)
浅析linux内核中timer定时器的生成和sofirq软中断调用流程 mod_timer添加的定时器timer在内核的软中断中发生调用,__run_timers会spin_lock_irq(& ...
- 大数据系列之Hadoop框架
Hadoop框架中,有很多优秀的工具,帮助我们解决工作中的问题. Hadoop的位置 从上图可以看出,越往右,实时性越高,越往上,涉及到算法等越多. 越往上,越往右就越火…… Hadoop框架中一些简 ...
- [转载]FFmpeg完美入门[4] - FFmpeg应用实例
1 用FFserver从文件生成流媒体 一.安装ffmpeg 在ubuntu下,运行sudo apt-get ffmpeg 安装ffmpeg,在其他linux操作系统下,见ffmpeg的编译过程(编译 ...