这是 meelo 原创的 IEEEXtreme极限编程大赛题解

Xtreme 10.0 - Ellipse Art

题目来源 第10届IEEE极限编程大赛

https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/ellipse-art

In IEEEXtreme 9.0, you met the famous artist, I.M. Blockhead. This year we want to introduce you to another famous artist, Ivy Lipps. Unlike I.M., Ivy makes her art by painting one or more ellipses on a canvas. All of her canvases measure 100 by 100 cms.

She needs your help. When she is done with the painting, she would like to know how much of the canvas is unpainted.

Input Format

The first line of input contains t, 1 ≤ t ≤ 8, which gives the number of test cases.

Each test case begins with a single integer, n, 1 ≤ n ≤ 40, which indicates the number of ellipses that Ivy has drawn.

The following n lines give the dimensions of each ellipse, in the following format:

x1 y1 x2 y2 r

Where:

  • (x1y1) and (x2y2) are positive integers representing the location of the foci of the ellipse in cms, considering the center of the canvas to be the origin, as in the image below.

  • r is a positive integer giving the length of the ellipse's major axis

You can refer to the Wikipedia webpage for background information on ellipses.

Coordinate system for the canvas.

Constraints

-100 ≤ x1y1x2y2 ≤ 100

r ≤ 200

r ≥ ((x2 - x1)2 + (y2 - y1)2)1/2 + 1

Note that these constraints imply that a given ellipse does not need to fall completely on the canvas (or even on the canvas at all).

Output Format

For each test case, output to the nearest percent, the percent of the canvas that is unpainted.

Note: The output should be rounded to the nearest whole number. If the percent of the canvas that is unpainted is not a whole number, you are guaranteed that the percent will be at least 10% closer to the nearer percent than it is from the second closest whole percent. Therefore you will not need to decide whether a number like 23.5% should be rounded up or rounded down.

Sample Input

3
1
-40 0 40 0 100
1
10 50 90 50 100
2
15 -20 15 20 50
-10 10 30 30 100

Sample Output

53%
88%
41%

Explanation

The ellipse in the first test case falls completely within the canvas, and it has an area of approximately 4,712 cm2. Since the canvas is 10,000 cm2, 53% of the canvas is unpainted.

In the second test case, the ellipse has the same size as in the first, but only one quarter of the ellipse is on canvas. Therefore, 88% of the canvas is unpainted.

In the final testcase, the ellipses overlap, and 41% of the canvas is unpainted.

题目解析

计算几何题,无法直接计算面积。

使用撒点法/蒙特卡洛模拟,计算椭圆内的点数占总点数的比率即可。

在x轴和y轴以0.2为间隔取点可以满足精度要求。

程序

C++

#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std; double ellip[][];
int n; double dist(double x1, double y1, double x2, double y2) {
return sqrt(pow(x2-x1, ) + pow(y2-y1, ));
}

// 判断点(x,y)是否在任意一个椭圆内
bool check(double x, double y) {
for(int i=; i<n; i++) {
if( dist(ellip[i][], ellip[i][], x, y) + dist(ellip[i][], ellip[i][], x, y) < ellip[i][]) {
return true;
}
} return false;
} int main() {
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
int T;
cin >> T;
while(T--) { cin >> n;
for(int j=; j<n; j++) {
for(int k=; k<; k++)
cin >> ellip[j][k];
}
// 统计位于椭圆内点的个数
int count = ;
for(double x=-; x<; x+=0.2) {
for(double y=-; y<; y+=0.2) {
if(!check(x, y)) count++;
}
}
cout << round(count / 2500.0) << "%" << endl;
}
return ;
}

博客中的文章均为 meelo 原创,请务必以链接形式注明 本文地址

IEEEXtreme 10.0 - Ellipse Art的更多相关文章

  1. IEEEXtreme 10.0 - Inti Sets

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Inti Sets 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank.c ...

  2. IEEEXtreme 10.0 - Painter's Dilemma

    这是 meelo 原创的 IEEEXtreme极限编程比赛题解 Xtreme 10.0 - Painter's Dilemma 题目来源 第10届IEEE极限编程大赛 https://www.hack ...

  3. IEEEXtreme 10.0 - Counting Molecules

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Counting Molecules 题目来源 第10届IEEE极限编程大赛 https://www.hac ...

  4. IEEEXtreme 10.0 - Checkers Challenge

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Checkers Challenge 题目来源 第10届IEEE极限编程大赛 https://www.hac ...

  5. IEEEXtreme 10.0 - Game of Stones

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Game of Stones 题目来源 第10届IEEE极限编程大赛 https://www.hackerr ...

  6. IEEEXtreme 10.0 - Playing 20 Questions with an Unreliable Friend

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Playing 20 Questions with an Unreliable Friend 题目来源 第1 ...

  7. IEEEXtreme 10.0 - Full Adder

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Full Adder 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank. ...

  8. IEEEXtreme 10.0 - N-Palindromes

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - N-Palindromes 题目来源 第10届IEEE极限编程大赛 https://www.hackerra ...

  9. IEEEXtreme 10.0 - Mysterious Maze

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Mysterious Maze 题目来源 第10届IEEE极限编程大赛 https://www.hacker ...

随机推荐

  1. 同时装了Python3和Python2,怎么用pip?

    问题:同时装了Python3和Python2,怎么用pip? Ubuntu13.04, 系统内同时装了Python3.3 和 2.7 用sudo apt-get install python-pip ...

  2. PHP 多线程采集

    function curl_multi($urls) { if (!is_array($urls) or count($urls) == 0) { return false; } $num=count ...

  3. javascript和bigint

    http://note.youdao.com/noteshare?id=91e21eb1d8c20025d72d7ee6f401e34d

  4. iOS APNs实战分享

    序言: 因为App的功能需要,最近一直在调研苹果的APNs推送,开始时觉得超麻烦,现在感觉还是比较easy,“难者不会,会者不难”,自己踩过了这么多的坑终于会了,不出来吐槽(装X)一下对不起自己,23 ...

  5. duilib 修复Text控件无法设置宽度的bug,增加自动加算宽度的属性

    转载请说明原出处,谢谢~~: 今天有朋友反映CTextUI控件无法设置宽度,于是修复了这个bug,顺便给Text控件增加了一个自动计算宽度的属性,描述如下 <Attribute name=&qu ...

  6. 使用Eclipse进行SWT编程

    使用Eclipse进行SWT编程 1. 为什么要使用SWT? SWT是IBM开发一套跨平台的GUI开发框架.为什么IBM要创建另一种GUI呢?为什么他们不使用现有的JavaGUI框架呢?要回答这些问题 ...

  7. background(css复合写法)

    1. 背景-background========================================================== 单个属性的写法 .sample1 { /*背景颜色 ...

  8. Error creating bean with name 'transactionManager' defined in ServletContext resource XXX

    spring & hibernate整合时候 ,并且使用hibernate.cfg.xml文件时回报这个错误, 解决办法,在hibernate.cfg.xml中加入 <property ...

  9. MongoDB - MongoDB CRUD Operations, Insert Documents

    MongoDB provides the following methods for inserting documents into a collection: db.collection.inse ...

  10. asp.net 遍历文件夹下全部子文件夹并绑定到gridview上

    遍历文件夹下所有子文件夹,并且遍历配置文件某一节点中所有key,value并且绑定到GridView上 Helper app_Helper = new Helper(); DataSet ds = n ...