题解

我们发现没有限制的小方格可以随便填

然后考虑有限制的,我们把它切割成一个个小块(枚举相邻的横纵坐标),然后记录一下这个小块的最大值限制(也就是所有覆盖它的矩形最小的最大值)

记录一下每个小块的大小,和每个小块在哪些有限制的大矩形,且小块的最大值限制等于大矩形的最大值限制,用一个二进制数表示

然后可以状压dp了,每次枚举这个小块里面填不填最大值,填了就是\(V^{n} - (V - 1)^{n}\)不填就是\((V - 1)^{n}\)

代码

#include <bits/stdc++.h>
#define MAXN 500005
//#define ivorysi
#define enter putchar('\n')
#define space putchar(' ')
#define fi first
#define se second
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1000000007;
int T;
int N,H,W,Q,numx[45],numy[45],cnt,cov[505],cal[505],val[505],tot,ans;
int f[505][(1 << 10) + 5];
struct node {
int x1,x2,y1,y2,val;
}M[15];
int inc(int a,int b) {
a = a + b;
if(a >= MOD) a -= MOD;
return a;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
void pre() {
sort(numx + 1,numx + cnt + 1);
sort(numy + 1,numy + cnt + 1);
memset(cov,0,sizeof(cov));
memset(cal,0,sizeof(cal));
tot = 0;
for(int i = 1 ; i <= cnt ; ++i) {
for(int j = 1 ; j <= cnt ; ++j) {
int sx = numx[i - 1] + 1,sy = numy[j - 1] + 1;
int tx = numx[i],ty = numy[j];
if(sx > tx || sy > ty) continue;
int v = Q;
bool flag = 0;
for(int k = 1 ; k <= N ; ++k) {
if(sx >= M[k].x1 && tx <= M[k].x2 && sy >= M[k].y1 && ty <= M[k].y2) {
v = min(v,M[k].val);
flag = 1;
}
}
if(!flag) {
ans = mul(ans,fpow(Q,(tx - sx + 1) * (ty - sy + 1)));
continue;
}
++tot;cal[tot] = (tx - sx + 1) * (ty - sy + 1);val[tot] = v;
for(int k = 1 ; k <= N ; ++k) {
if(v == M[k].val) {
if(sx >= M[k].x1 && tx <= M[k].x2 && sy >= M[k].y1 && ty <= M[k].y2) {
cov[tot] |= 1 << (k - 1);
}
}
}
}
}
}
void Solve() {
read(H);read(W);read(Q);read(N);
cnt = 0;
ans = 1;
for(int i = 1 ; i <= N ; ++i) {
read(M[i].x1);read(M[i].y1);read(M[i].x2);read(M[i].y2);read(M[i].val);
numx[++cnt] = M[i].x1 - 1;numy[cnt] = M[i].y1 - 1;
numx[++cnt] = M[i].x2;numy[cnt] = M[i].y2;
}
numx[++cnt] = 0;numy[cnt] = 0;
numx[++cnt] = H;numy[cnt] = W;
pre();
memset(f,0,sizeof(f));
f[0][0] = 1;
for(int i = 1 ; i <= tot ; ++i) {
for(int S = 0 ; S < (1 << N) ; ++S) {
f[i][S | cov[i]] = inc(f[i][S | cov[i]],mul(f[i - 1][S],inc(fpow(val[i],cal[i]),MOD - fpow(val[i] - 1,cal[i]))));
f[i][S] = inc(f[i][S],mul(f[i - 1][S],fpow(val[i] - 1,cal[i])));
}
}
ans = mul(ans,f[tot][(1 << N) - 1]);
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
read(T);
while(T--) {
Solve();
}
return 0;
}

【LOJ】#2280. 「FJOI2017」矩阵填数的更多相关文章

  1. loj2280 「FJOI2017」矩阵填数

    状压 dp.参考there #include <algorithm> #include <iostream> #include <cstring> #include ...

  2. 【BZOJ5010】【FJOI2017】矩阵填数 [状压DP]

    矩阵填数 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定一个 h*w 的矩阵,矩阵的行 ...

  3. 「BZOJ 5010」「FJOI 2017」矩阵填数「状压DP」

    题意 你有一个\(h\times w\)的棋盘,你需要在每个格子里填\([1, m]\)中的某个整数,且满足\(n\)个矩形限制:矩形的最大值为某定值.求方案数\(\bmod 10^9+7\) \(h ...

  4. loj#2128. 「HAOI2015」数字串拆分 矩阵乘法

    目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...

  5. [FJOI2017]矩阵填数——容斥

    参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...

  6. P3813 [FJOI2017]矩阵填数(组合数学)

    P3813 [FJOI2017]矩阵填数 shadowice1984说:看到计数想容斥........ 这题中,我们把图分成若干块,每块的最大值域不同 蓝后根据乘法原理把每块的方案数(互不相干)相乘. ...

  7. [BZOJ5010][FJOI2017]矩阵填数(状压DP)

    5010: [Fjoi2017]矩阵填数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 45[Submit][Status][ ...

  8. bzoj5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  9. bzoj 5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

随机推荐

  1. dalao&话

    最大权闭合子图 正负点权之间连边,容量为无穷大,代表正负之间有联系,跑最小割,要么舍弃正的要么舍弃负的,就是把图割开

  2. VC6完整项目代码升级到VS2010

    VC6完整项目代码升级到VS2010,有需要请联系我,专业C++开发,邮箱153786575@qq.com

  3. 图论&数学:最小平均值环

    POJ2989:求解最小平均值环 最优化平均值的显然做法是01分数规划 给定一个带权有向图 对于这个图中的每一个环 定义这个环的价值为权值之和的平均值 对于所有的环,求出最小的平均值 这个结论怎么做的 ...

  4. Mahout源码目录说明&&算法集

    Mahout源码目录说明 mahout项目是由多个子项目组成的,各子项目分别位于源码的不同目录下,下面对mahout的组成进行介绍: 1.mahout-core:核心程序模块,位于/core目录下: ...

  5. docker使用host模式启动nginx

    mkdir -p /root/nginx-docker-demo/html docker run --network=host --rm --name mynginx --volume /root/n ...

  6. mongoDB与sql聚合操作对应图

    SQL Terms, Functions, and Concepts MongoDB Aggregation Operators WHERE $match GROUP BY $group HAVING ...

  7. 【Project Euler】530 GCD of Divisors 莫比乌斯反演

    [题目]GCD of Divisors [题意]给定f(n)=Σd|n gcd(d,n/d)的前缀和F(n),n=10^15. [算法]莫比乌斯反演 [题解]参考:任之洲数论函数.pdf 这个范围显然 ...

  8. 快速幂取模_C++

    一.题目背景 已知底数a,指数b,取模值mo 求ans = ab % mo 二.朴素算法(已知可跳过) ans = 1,循环从 i 到 b ,每次将 ans = ans * a % mo 时间复杂度O ...

  9. HTML如何编写为桌面程序

    学过/用过HTML的人应该都知道HTML是标记语言,是在网页上执行/使用的,在这里小编告诉你HTML也可以用来做桌面程序,这种桌面程序一般是微客户端 工具/原料   html dreamweaver ...

  10. Java爬虫(二)

    上一篇简单的实现了获取url返回的内容,在这一篇就要第返回的内容进行提取,并将结果保存到html中.而且这个爬虫是基于python爬虫的java语言实现,其逻辑大致相同. 一 . 需求: 抓取主页面: ...