Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 5646   Accepted: 1226

Description

In an edge-weighted tree, the xor-length of a path p is defined as the xor sum of the weights of edges on p:

⊕ is the xor operator.

We say a path the xor-longest path if it has the largest xor-length. Given an edge-weighted tree with n nodes, can you find the xor-longest path?  

Input

The input contains several test cases. The first line of each test case contains an integer n(1<=n<=100000), The following n-1 lines each contains three integers u(0 <= u < n),v(0 <= v < n),w(0 <= w < 2^31), which means there is an edge between node u and v of length w.

Output

For each test case output the xor-length of the xor-longest path.

Sample Input

4
0 1 3
1 2 4
1 3 6

Sample Output

7

Hint

The xor-longest path is 0->1->2, which has length 7 (=3 ⊕ 4)

题意:给出一颗n个节点的边权树,求一条路径(u,v),使得路径上的边的权值异或值最大

思路:我们可以先0为根,求出其他节点i到根的路径的边权异或值d[i],对于u,v之间路径的边权异或结果就是d[u]^d[v], 那么问题转化为给出n个数,求任意两个异或的最大值

把每一个数以二进制形式从高位到低位插入trie中,然后依次枚举每个数,在trie中贪心,即当前为0则向1走,为1则向0走。

一开始写动态分配节点的trie一直tle。。。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
typedef long long ll;
const int N = ; int n;
struct Edge {
int v, w, nex;
Edge() {}
Edge(int v, int w, int nex) : v(v), w(w), nex(nex) {}
};
Edge e[N << ];
int head[N], tot;
void add(int u, int v, int w) {
e[tot] = Edge(v, w, head[u]);
head[u] = tot++;
}
void read() {
memset(head, -, sizeof head);
tot = ;
int u, v, w;
for(int i = ; i < n; ++i) {
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
add(v, u, w);
}
}
int d[N], vis[N];
void bfs() {
queue<int> que;
que.push();
d[] = ;
memset(vis, , sizeof vis);
int u, v, w;
vis[] = ;
while(!que.empty()) {
u = que.front(); que.pop();
for(int i = head[u]; ~i; i = e[i].nex) {
v = e[i].v; w = e[i].w;
if(vis[v]) continue;
d[v] = d[u] ^ w;
vis[v] = ;
que.push(v);
}
}
}
int ch[N * ][];
struct Trie {
int sz;
Trie() { sz = ; memset(ch[], , sizeof ch[]); }
void _insert(int bs[]) {
int u = ;
for(int i = ; i >= ; --i) {
int c = bs[i];
if(!ch[u][c]) {
memset(ch[sz], , sizeof ch[sz]);
ch[u][c] = sz++;
}
u = ch[u][c];
}
}
int _search(int bs[]) {
int u = , ans = ;
for(int i = ; i >= ; --i) {
int c = bs[i];
if(c == ) {
if(ch[u][]) { ans += ( << (i)); u = ch[u][]; }
else u = ch[u][];
}else {
if(ch[u][]) { ans += ( << (i)); u = ch[u][]; }
else u = ch[u][];
}
}
return ans;
}
}; int ans;
int b[];
void get(int x) {
int ls = ;
memset(b, , sizeof b);
while(x) {
b[ls++] = x % ;
x >>= ;
}
}
void solve() {
Trie mytrie;
ans = ;
for(int i = ; i < n; ++i) {
get(d[i]);
mytrie._insert(b);
ans = max(ans, mytrie._search(b));
}
printf("%d\n", ans);
}
int main() {
// freopen("in.txt", "r", stdin);
while(~scanf("%d", &n)) {
read();
bfs();
solve();
}
}

Poj The xor-longest Path 经典题 Trie求n个数中任意两个异或最大值的更多相关文章

  1. poj 2001:Shortest Prefixes(字典树,经典题,求最短唯一前缀)

    Shortest Prefixes Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 12731   Accepted: 544 ...

  2. poj3764 The XOR Longest Path【dfs】【Trie树】

    The xor-longest Path Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10038   Accepted:  ...

  3. 题解 bzoj1954【Pku3764 The xor – longest Path】

    做该题之前,至少要先会做这道题. 记 \(d[u]\) 表示 \(1\) 到 \(u\) 简单路径的异或和,该数组可以通过一次遍历求得. \(~\) 考虑 \(u\) 到 \(v\) 简单路径的异或和 ...

  4. 51Nod - 1295:XOR key (可持久化Trie求区间最大异或)

    给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求ALL 至 ARR 这R - L + 1个数中,与X 进行异或运算(Xor),得到的最大值 ...

  5. poj 1004:Financial Management(水题,求平均数)

    Financial Management Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 126087   Accepted: ...

  6. SGU 275 To xor or not to xor 高斯消元求N个数中选择任意数XORmax

    275. To xor or not to xor   The sequence of non-negative integers A1, A2, ..., AN is given. You are ...

  7. POJ 1149:PIGS 网络流经典题

    PIGS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18345   Accepted: 8354 Description ...

  8. hdu 5265 技巧题 O(nlogn)求n个数中两数相加取模的最大值

    pog loves szh II Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  9. ACM学习历程—POJ 3764 The xor-longest Path(xor && 字典树 && 贪心)

    题目链接:http://poj.org/problem?id=3764 题目大意是在树上求一条路径,使得xor和最大. 由于是在树上,所以两个结点之间应有唯一路径. 而xor(u, v) = xor( ...

随机推荐

  1. java中数组的基本知识

    数组{ 物以类聚 人以群分 avg sum 数组 数组的概念[ 数组:一组具有相同数据类型的集合 ] 数组的语法[ 先声明 后使用 声明数组: 数据类型+[]+ 变量名 ;/ 数据类型+变量名 +[] ...

  2. 各大浏览器内核介绍(Rendering Engine)

    在介绍各大浏览器的内核之前,我们先来了解一下什么是浏览器内核. 所谓浏览器内核就是指浏览器最重要或者说核心的部分"Rendering Engine",译为"渲染引擎&qu ...

  3. C++ 共享内存 函数封装

    #pragma once #include <string> #include <wtypes.h> #include <map> using namespace ...

  4. Word2010如何恢复没有保存的文件

    今天临时遇到的,百度下还真有办法,借助文件自动保存的位置可以进行恢复. 给一个参考链接,有时间详细整理 简单说明,也就是利用word自动保存功能找到上次自动保存的位置 因为这个功能默认开启的 文件-- ...

  5. ios显示一个下载banner

    <meta name="apple-itunes-app" content="app-id=432274380" /> 这个标签是告诉iphone的 ...

  6. $q -- AngularJS中的服务(理解)

      描述 译者注: 看到了一篇非常好的文章,如果你有兴趣,可以查看: Promises与Javascript异步编程 , 里面对Promises规范和使用情景,好处讲的非常好透彻,个人觉得简单易懂. ...

  7. WinForm用户控件、动态创建添加控件、timer控件--2016年12月12日

    好文要顶 关注我 收藏该文 徐淳 关注 - 1 粉丝 - 3       0 0     用户控件: 通过布局将多个控件整合为一个控件,根据自己的需要进行修改,可对用户控件内的所有控件及控件属性进行修 ...

  8. CAD打印线条太粗、线条颜色设置

    不管你是使用打印机,还是将CAD转换为PDF文件,如果出现以下情况,线条太粗,根本看不清楚,怎么解决呢? 或者,不想通过图层复杂.繁琐的设置,想将各种颜色线条的CAD全部打印成黑白,或者指定某一种颜色 ...

  9. java 使用正则表达式过滤HTML中标签

    /** * 去掉文本中的html标签 * * @param inputString * @return */ public static String html2Text(String inputSt ...

  10. html的a标签display:block之后文字竖直居中

    设置行高和a标签的高度一样就能居中,使用line-height