RDD是Spark对各类数据计算模型的统一抽象,被用于迭代计算过程以及任务输出结果的缓存读写。

在所有MapReduce框架中,shuffle是连接map任务和reduce任务的桥梁。shuffle性能优劣直接决定了

整个计算引擎的性能和吞吐量。

6.1 迭代计算

MappedRDD的iterator方法

6.2 什么是shuffle

shuffle是所有MapReduce计算框架所必须经过的阶段,shuffle用于打通map任务的输出与reduce任务的输入,

map任务的中间输出结果按照key值哈希后分配给某一个reduce任务。

目前Spark的shuffle已经做了多种性能优化,主要解决方案包括:

1>将map任务输出的bucket(给每个partition的reduce)合并到同一个文件中,这解决了bucket数量很对多,但是本身数据体积不大

时,造成shuffle很频繁,磁盘I/O成为性能瓶颈的问题。

2>map任务逐条输出计算结果,而不是一次性输出到内存中,并使用缓存及其聚合算法对中间结果进行聚合,大大减小了中间结果所占的内存大小。

3>缓存溢出判断,超过大小时,将数据写入磁盘,防止内存溢出

4>reduce任务对拉取到的map任务中间结果逐条读取,而不是一次性读入内存,并在内存中使用聚合和排序,大大减少了数据占用内存

5>reduce任务将要拉取的Block按照BlockManager地址划分,然后将同一BlockManager地址中的Block累计为少量网络请求,减少网络I/O

6.3 map端计算结果缓存处理

首先理解两个概念:

bypassMergeThreshold:传递到reduce端再做merge操作的阈值。默认200

bypassMergeSort:标记是否传递到reduce端再做合并和排序

map端计算结果缓存有三种处理方式:
1.map端对计算结果在缓存中执行聚合和排序。

2.map不适用缓存,也不执行聚合和排序,直接调用spillToPartitionFiles将各个partition直接写到自己存储文件,

最后由reduce端对计算结果执行合并和排序。

3.map端对计算结果简单缓存。

6.3.1 map端结算结果缓存聚合

在一个任务的分区数量通常很多,如果只是简单地将数据存储到Executor上。在执行reduce任务时会存在大量的网络I/O操作。

这时网络I/O将成为系统性能的瓶颈,reduce任务读取map任务的计算结果变慢,导致其他任务不得不选择分配到更远的节点。

通过在map端对计算结果在缓存中执行聚合和排序,能够节省I/O操作,进而提升系统性能。

6.3.2 map端计算结果简单缓存

6.3.3 容量限制

AppendOnlyMap和SizeTrackingPairBuffer的容量都可以增长,那么数据量不大的时候不会有问题。

由于大数据处理的数据量往往都比较大,全部都放入内存内会将系统内存撑爆,Spark为了防止这个问题,

提供函数maybeSpillConllection。

6.4 map端计算结果持久化

wirtePartitionFile用于持久化计算结果。

1.溢出到分区文件后合并:将内存中缓存的多个partition的计算结果分别写入临时Block文件,再将这些Block文件的内容全部写入到Block输出文件中。

2.内存中排序合并:将缓存的中间计算结果按照partition分组后写入Block输出文件。

6.4.1 溢出分区文件

每个map任务实际最后只会生成一个磁盘文件。

6.4.2 排序与分区分组

partitionedIterator 通过对集合按照指定的比较器进行比较,按照partition id分组,生成迭代器。

6.4.3 分区索引文件

6.5 reduce端读取中间计算结果

6.5.1 获取map任务状态

6.5.2 划分本地与远程Block

6.5.3 获取远程Block

sendRequest方法用于远程请求中间结果。

sendRequest利用FetchRequest里封装的BlockId、size、address等信息。

调用shuffleClient的fetchBlocks方法获取其他节点上的中间结果。

6.5.4 获取本地Block

fetchLocalBlock用于对本地中间计算结果的获取。

6.6 reduce端计算

6.6.1 如何同时处理多个map任务的中间结果

6.6.2 reduce端在缓存中对中间计算结果执行聚合和排序

6.7 map端和reduce端组合分析

6.7.1 在map端溢出分区文件,在reduce端合并组合

6.7.2 在map端简单缓存、排序分组,在reduce端合并组合

6.7.3 在map端缓存中聚合、排序分组,在reduce端组合

6.8 小结

  本章从迭代计算的层层剥离开始,分析了map和reduce任务的处理逻辑。

  

《深入理解Spark-核心思想与源码分析》(六)第六章计算引擎的更多相关文章

  1. 《深入理解Spark:核心思想与源码分析》——SparkContext的初始化(叔篇)——TaskScheduler的启动

    <深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...

  2. 《深入理解Spark:核心思想与源码分析》(前言及第1章)

    自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售 ...

  3. 《深入理解Spark:核心思想与源码分析》(第2章)

    <深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...

  4. 《深入理解Spark:核心思想与源码分析》一书正式出版上市

    自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售 ...

  5. 《深入理解Spark:核心思想与源码分析》正式出版上市

    自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售 ...

  6. 《深入理解Spark-核心思想与源码分析》(一)总体规划和第一章环境准备

    <深入理解Spark 核心思想与源码分析> 耿嘉安著 本书共计486页,计划每天读书20页,计划25天完成. 2018-12-20   1-20页 凡事豫则立,不豫则废:言前定,则不跲:事 ...

  7. spark的存储系统--BlockManager源码分析

    spark的存储系统--BlockManager源码分析 根据之前的一系列分析,我们对spark作业从创建到调度分发,到执行,最后结果回传driver的过程有了一个大概的了解.但是在分析源码的过程中也 ...

  8. Android源码分析(十六)----adb shell 命令进行OTA升级

    一: 进入shell命令界面 adb shell 二:创建目录/cache/recovery mkdir /cache/recovery 如果系统中已有此目录,则会提示已存在. 三: 修改文件夹权限 ...

  9. 手机自动化测试:appium源码分析之bootstrap六

    手机自动化测试:appium源码分析之bootstrap六   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.poptest测试 ...

随机推荐

  1. tf.name_scope tf.variable_scope学习

    1. 首先看看比较简单的 tf.name_scope(‘scope_name’). tf.name_scope 主要结合 tf.Variable() 来使用,方便参数命名管理. ''' Signatu ...

  2. pycharts实现可视化

    https://blog.csdn.net/u012535605/article/details/80677791http://pyecharts.org/#/zh-cn/prepare  (中文官网 ...

  3. java程序out of memory【转】

    相信大家都有感触,线上服务内存OOM的问题,是最难定位的问题,不过归根结底,最常见的原因: 本身资源不够 申请的太多 资源耗尽 58到家架构部,运维部,58速运技术部联合进行了一次线上服务内存OOM问 ...

  4. 华东师范大学第十届ECNU Coder程序设计竞赛

    华东师范大学第十届ECNU Coder程序设计竞赛 浮点数模运算 solution 转成整数然后取模. 时间复杂度:\(O(1)\) 数螃蟹 solution 找出公差出现次数最多的作为公差,然后找出 ...

  5. 2016 ACM ICPC Asia Region - Tehran

    2016 ACM ICPC Asia Region - Tehran A - Tax 题目描述:算税. solution 模拟. B - Key Maker 题目描述:给出\(n\)个序列,给定一个序 ...

  6. OC学习篇之---类的延展

    来源:http://blog.csdn.net/jiangwei0910410003/article/details/41775603 前一篇文章我们介绍了类的类目概念和使用:http://blog. ...

  7. IO的学习与使用

    一.IO的学习方法:IO中包含了很多的类,推荐的学习方式是:“举一反三,掌握一种,以此类推”. 二.I/O操作的目标: 输入:从数据源(在数据源和程序之间建立的一个数据流淌的“管道”)中读取数据(文件 ...

  8. Enumeration的学习

    枚举是jdk5.0之后的新特性.枚举的使用在编程中能起到很大的作用,本文从枚举的适用范围.枚举的特点.枚举的使用等三个方面学习枚举 一.枚举的使适用范围 “在有限的范围内选择值”:比如一个星期只有星期 ...

  9. C/C++——C语言库函数大全

    本文转载自:https://blog.csdn.net/yanfan0916/article/details/6450442###; 1. 分类函数: ctype.h  int isalpha(int ...

  10. django入门--django-blog-zinnia搭建个人博客

    1.安装python 选择合适python2.7及以上版本安装https://www.python.org/downloads/ 2.建立虚拟环境 这不是必须的,但是建议使用,为每个项目单独引入依赖, ...