[BZOJ4869][六省联考2017]相逢是问候(线段树+扩展欧拉定理)
4869: [Shoi2017]相逢是问候
Time Limit: 40 Sec Memory Limit: 512 MB
Submit: 1313 Solved: 471
[Submit][Status][Discuss]Description
Informatikverbindetdichundmich.信息将你我连结。B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数。一共有m个操作,可以分为两种:0 l r表示将第l个到第r个数(al,al+1,...,ar)中的每一个数ai替换为c^ai,即c的ai次方,其中c是输入的一个常数,也就是执行赋值ai=c^ai1 l r求第l个到第r个数的和,也就是输出:sigma(ai),l<=i<=rai因为这个结果可能会很大,所以你只需要输出结果mod p的值即可。Input
第一行有三个整数n,m,p,c,所有整数含义见问题描述。接下来一行n个整数,表示a数组的初始值。接下来m行,每行三个整数,其中第一个整数表示了操作的类型。如果是0的话,表示这是一个修改操作,操作的参数为l,r。如果是1的话,表示这是一个询问操作,操作的参数为l,r。1 ≤ n ≤ 50000, 1 ≤ m ≤ 50000, 1 ≤ p ≤ 100000000, 0 < c <p, 0 ≤ ai < pOutput
对于每个询问操作,输出一行,包括一个整数表示答案mod p的值。Sample Input
4 4 7 2
1 2 3 4
0 1 4
1 2 4
0 1 4
1 1 3Sample Output
0
3HINT
鸣谢多名网友提供正确数据,已重测!
Source
扩展欧拉定理:$a^x \equiv a^{x\% \phi (p)+[x> \phi (p)] \phi (p)} (mod p)$,a和p可以不互质。
我们可以不断展开:$c^{c^x} \equiv c^{c^x\% \phi (p)+\phi(p) } \equiv c^{c^{x\% \phi(\phi(p))+\phi(\phi(p))}\%\phi(p)+\phi(p)}(mod p)$,以此类推。
可以证明在$O(\log n)$次内模数会变为1,也就是最后会变成$x\%1+1$所以这个直接用线段树维护就好,如果一个区间内的所有数都变成1了就不必处理。
注意最后要加一个$\phi(1)$:https://blog.csdn.net/llgyc/article/details/71076172
#include<cstdio>
#include<algorithm>
#define ls (x<<1)
#define rs (x<<1)|1
#define lson ls,L,mid
#define rson rs,mid+1,R
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=100010;
int n,m,op,l,r,a[N],cnt,c,dep[N<<2];
ll sum[N<<2],mod[N]; ll phi(ll x){
ll res=x;
for (int i=2; i*i<=x; i++)
if (!(x%i)){
res=res*(i-1)/i;
while (!(x%i)) x/=i;
}
if (x>1) res=res*(x-1)/x;
return res;
} ll pow(ll a,ll b,ll p,bool &f){
ll res=1; f=0;
while (b){
if (b & 1) f|=(res*a>=p),res=(res*a)%p;
f|=(a*a>=p && b>1); a=(a*a)%p; b>>=1;
}
return res;
} ll calc(ll x,ll p){
ll res=x; bool f;
if (res>=mod[p]) res=res%mod[p]+mod[p];
while (p--){
res=pow(c,res,mod[p],f);
if (f) res+=mod[p];
}
return res%mod[0];
} void build(int x,int L,int R){
if (L==R) { dep[x]=0; sum[x]=a[L]; return; }
int mid=(L+R)>>1;
build(ls,L,mid); build(rs,mid+1,R);
sum[x]=(sum[ls]+sum[rs])%mod[0];
} void mdf(int x,int L,int R,int l,int r){
if (dep[x]>=cnt) return;
if (L==R){ sum[x]=calc(a[L],++dep[x]); return; }
int mid=(L+R)>>1;
if (r<=mid) mdf(lson,l,r);
else if (l>mid) mdf(rson,l,r);
else mdf(lson,l,mid),mdf(rson,mid+1,r);
dep[x]=min(dep[ls],dep[rs]); sum[x]=(sum[ls]+sum[rs])%mod[0];
} ll que(int x,int L,int R,int l,int r){
if (L==l && r==R) return sum[x];
int mid=(L+R)>>1;
if (r<=mid) return que(lson,l,r);
else if (l>mid) return que(rson,l,r);
else return (que(lson,l,mid)+que(rson,mid+1,r))%mod[0];
} int main(){
freopen("verbinden.in","r",stdin);
freopen("verbinden.out","w",stdout);
scanf("%d%d%lld%d",&n,&m,&mod[0],&c);
while (mod[cnt]!=1) cnt++,mod[cnt]=phi(mod[cnt-1]);
mod[++cnt]=1;
rep(i,1,n) scanf("%d",&a[i]);
build(1,1,n);
while (m--){
scanf("%d%d%d",&op,&l,&r);
if (!op) mdf(1,1,n,l,r); else printf("%lld\n",que(1,1,n,l,r));
}
return 0;
}
[BZOJ4869][六省联考2017]相逢是问候(线段树+扩展欧拉定理)的更多相关文章
- BZOJ4869 六省联考2017相逢是问候(线段树+欧拉函数)
由扩展欧拉定理,a^(a^(a^(……^x)))%p中x作为指数的模数应该是φ(φ(φ(φ(……p)))),而p取log次φ就会变为1,也即每个位置一旦被修改一定次数后就会变为定值.线段树维护区间剩余 ...
- bzoj千题计划271:bzoj4869: [六省联考2017]相逢是问候
http://www.lydsy.com/JudgeOnline/problem.php?id=4869 欧拉降幂+线段树,每个数最多降log次,模数就会降为1 #include<cmath&g ...
- 洛谷 P3747 [六省联考2017]相逢是问候 解题报告
P3747 [六省联考2017]相逢是问候 题目描述 \(\text {Informatik verbindet dich und mich.}\) 信息将你我连结. \(B\) 君希望以维护一个长度 ...
- 洛谷P3747 [六省联考2017]相逢是问候
传送门 题解 扩展欧拉定理. 线段树维护,已经全改到底了的节点就不管,不然暴力修改下去. //Achen #include<algorithm> #include<iostream& ...
- P3747 [六省联考2017]相逢是问候
题意 如果对一个数操作\(k\)次,那么这个数会变成\(c^{c^{...^{a_i}}}\),其中\(c\)有\(k\)个. 根据P4139 上帝与集合的正确用法这道题,我们可以知道一个数不断变为自 ...
- 【LuoguP3747】[六省联考2017] 相逢是问候
题目链接 题意 给定一个长度为 n 的序列 a , 给定一个正整数 c 每次修改操作是把一段区间内的数 \(x_i\) 修改为 \(c^{x_i}\) 询问区间和模 p 的结果 Sol 修改是把一个数 ...
- 【bzoj4869】[Shoi2017]相逢是问候 线段树+扩展欧拉定理
Description Informatikverbindetdichundmich. 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两 ...
- 2017 [六省联考] T2 相逢是问候
4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 1205 Solved: 409[Submit][Stat ...
- 【BZOJ4873】[六省联考2017]寿司餐厅(网络流)
[BZOJ4873][六省联考2017]寿司餐厅(网络流) 题面 BZOJ 洛谷 题解 很有意思的题目 首先看到答案的计算方法,就很明显的感觉到是一个最大权闭合子图. 然后只需要考虑怎么构图就行了. ...
随机推荐
- jQuery 页面加载初始化
jQuery 页面加载初始化的方法有3种 ,页面在加载的时候都会执行脚本,应该没什么区别,主要看习惯吧,本人觉得第二种方法最好,比较简洁. 第一种: $(document).ready(functio ...
- NYOJ 35 表达式求值 (字符串处理)
题目链接 描述 ACM队的mdd想做一个计算器,但是,他要做的不仅仅是一计算一个A+B的计算器,他想实现随便输入一个表达式都能求出它的值的计算器,现在请你帮助他来实现这个计算器吧. 比如输入:&quo ...
- c++中指针常量,常指针,指向常量的常指针区分
const char * myPtr = &char_A;//指向常量的指针 char * const myPtr = &char_A;//常量的指针 const char * con ...
- weblogic性能监控
1.
- ORACLE ASM中查询表空间使用情况、数据文件路径、裸设备磁盘总大小剩余大小
在ASM中:查询所有磁盘名称.总大小.剩余大小:单位MB-----查看组的信息(总大小)select name,total_mb, free_mb from v$asm_diskgroup; ---查 ...
- 63.UniquePaths II---dp
题目链接 题目大意:与62题类似,只是这个题中间有障碍. 法一:dfs,依旧超时.代码如下: public int uniquePathsWithObstacles(int[][] obstacleG ...
- 【bzoj5050】【bzoj九月月赛H】建造摩天楼
讲个笑话,这个题很休闲的. 大概是这样的,昨天看到这个题,第一眼星际把题目看反了然后感觉这是个傻逼题. 后来发现不对,这个修改一次的影响是很多的,可能导致一个数突然可以被改,也可能导致一个数不能被改. ...
- VirtualBox与Genymotion命令行启动
一.VirtualBox命令行启动 1.添加环境变量: %programfiles%\Oracle\VirtualBox 2.用VBoxManage查看已存在vmname|uuid命令: VBoxMa ...
- 关于JavaScript中实现继承,及prototype属性
感谢Mozilla 让我弄懂继承. JavaScript有八种基本类型,函数属于object.所以所有函数都继承自object.//扩展:对象,基本上 JavaScript 里的任何东西都是对象,而且 ...
- html学习-DOM操作
1.dom介绍 文档对象模型(Document Object Model,DOM)是一种用于HTML和XML文档的编程接口.它给文档提供了一种结构化的表示方法,可以改变文档的内容和呈现方式.我们最为关 ...