HihoCoder - 1513 bitset处理五维偏序
题意:给出\(n<3e4\)个有序组\((a,b,c,d,e)\),求对第\(i\)个有序组有多少个\(j\)满足\((a_j<a_i,b_j<b_i,c_j<c_i,d_j<d_i,e_j<e_i)\)
五维偏序问题按套路来可以排序+树套树套树套树(打死
然而这是显然连\(O(n^2)\)暴力都不如的
可是题目给4s,\(O(n^2)\)是不可能的,但在神奇的bitset加持下\(O(5*n^2/32)\)的时空复杂度是可以卡过去的!
用bitset表示集合,\(bit[i]:\)如果\(i\)在集合中就设为1,否则0
维护\(bit[i][j]\),表示排在第\(j\)个关键字的第\(i\)名前面的集合状态
如果\(rank[k]<rank[i]\),则置\(bit[i][j][k]=1\)
这里如果是有序的就可以直接利用bitset的\(O(n^2/32)\)构造进行暴力传递
然后对5个关键字的集合求交就可以得出各个答案
#include<bits/stdc++.h>
#include<unordered_set>
#include<unordered_map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iter(i,j) for(int i=0;i<(j).size();i++)
#define print(a) printf("%lld",(ll)a)
#define println(a) printf("%lld\n",(ll)a)
#define printbk(a) printf("%lld ",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int MAXN = 3e4+11;
const int oo = 0x3f3f3f3f;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int a[MAXN][6],ra[MAXN][6];
bitset<MAXN> bs[MAXN][6],t;
int main(){
int n;
while(cin>>n){
rep(i,0,n) rep(j,1,5) bs[i][j].reset();
rep(i,1,n) rep(j,1,5) ra[a[i][j]=read()][j]=i;
rep(i,2,n) rep(j,1,5){
bs[i][j]=bs[i-1][j];
bs[i][j][ra[i-1][j]]=1;
}
rep(i,1,n){
t=bs[a[i][1]][1];
rep(j,2,5) t&=bs[a[i][j]][j];
println(t.count());
}
}
return 0;
}
HihoCoder - 1513 bitset处理五维偏序的更多相关文章
- hihoCoder.1513.小Hi的烦恼(bitset 五维偏序)
题目链接 五维偏序,对每一维维护bitset,表示哪儿为1(比它大),然后5个bitset与起来就能得到答案了. 具体实现可以用5*n个bitset,按排名搞个前缀和. 复杂度\(O(n^2/w)\) ...
- 2015北京网络赛 J Clarke and puzzle 求五维偏序 分块+bitset
Clarke and puzzle Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://hihocoder.com/contest/acmicpc20 ...
- hiho#1513 : 小Hi的烦恼 五维偏序
hiho#1513 : 小Hi的烦恼 五维偏序 链接 hiho 思路 高维偏序用bitset,复杂度\((\frac{n^2}{32})\) 代码 #include <bits/stdc++.h ...
- 【整理】STL中的bitset(二进制华丽解决假五维偏序题)
------------更多Bitset的运用,请看这里http://www.cnblogs.com/hua-dong/p/8519739.html. 由于在学cdq分治,看到了这道题.先来看一道题目 ...
- hihocoder #1236 Scores (15北京赛区网络赛J) (五维偏序,强制在线,bitset+分块)
链接:http://hihocoder.com/problemset/problem/1236 思路; 有n个五维的向量,给出q个询问,每个询问是一个五维向量,问有多少个向量没有一维比这个向量大.并且 ...
- HihoCoder - 1236 Scores (五维偏序,分块+bitset)
题目链接 题意:给定n个五维空间上的点,以及m组询问,每组询问给出一个点,求五个维度都不大于它的点有多少个,强制在线. 神仙题 单独考虑每个维度,把所有点按这个维度上的大小排序,然后分成T块,每块用一 ...
- 【学习笔记】使用 bitset 求解较高维偏序问题
求解五维偏序 给定 \(n(\le 3\times 10^4)\) 个五元组,对于每个五元组 \((a_i, b_i, c_i, d_i, e_i)\),求存在多少个 \(1\le j\le n\) ...
- CDQ分治嵌套模板:多维偏序问题
CDQ分治2 CDQ套CDQ:四维偏序问题 题目来源:COGS 2479 偏序 #define LEFT 0 #define RIGHT 1 struct Node{int a,b,c,d,bg;}; ...
- hihocoder#1513 : 小Hi的烦恼 bitset
目录 题目链接 题解 代码 题目链接 hihocoder#1513 : 小Hi的烦恼 题解 cdq 套cdq 套cdq 套cdq就完了呀 对每一科开n个bitset 表示该科目前i个有谁 每次查询都& ...
随机推荐
- 冲刺NOIP2015提高组复赛模拟试题(五) 3.破坏基地
3.破坏基地 描述 Description 在Z国和W国之间一直战火不断. 好不容易,W国的间谍把完整的Z国的军事基地的地图到手了. 于是W国决定再次出击,一举击破Z国的防线. W国认真研究了Z国的地 ...
- [Training Video - 3] [Groovy in Detail] What is a groovy class ?
log.info "starting" // we use class to create objects of a class Planet p1 = new Planet() ...
- [SoapUI] 通过Groovy获取SoapUI当前Project所在的目录
import com.eviware.soapui.support.GroovyUtils def groovyUtils = new GroovyUtils( context ) def proje ...
- Kubernetes (1.6) 中的存储类及其动态供给
原文地址:http://blog.fleeto.us/translation/dynamic-provisioning-and-storage-classes-kubernetes-0?utm_sou ...
- Web环境中Spring的启动过程
1.spring不但可以在JavaSE环境中应用,在Web环境中也可以广泛应用,Spring在web环境中应用时,需要在应用的web.xml文件中添加如下的配置: …… <context-par ...
- IOCP~~
下载源代码 原文网址:http://www.codeproject.com/KB/IP/iocp_server_client.aspx 源码使用了高级的完成端口(IOCP)技术,该技术可以有效地服务于 ...
- Java对称加密算法
对称加密算法概念 加密密钥和解密密钥相同,大部分算法加密揭秘过程互逆. 特点:算法公开.(相比非对称加密)计算量小.加密速度快.效率高. 弱点:双方都使用同样的密钥,安全性得不到保证. 常用对称加密算 ...
- Subsequence——POJ3061
题目:http://poj.org/problem?id=3061 尺取法解题 import java.util.Scanner;; public class Main { public static ...
- jeecms栏目模型和内容模型的使用以及对应前台的标签中的属性名
第一步:模型管理-添加模型: 栏目模板前缀设定方案下的channel目录下的ch_menu.html作为浏览栏目的模板页.对应访问网址:项目名/栏目名(一级或者二级栏目如news或者gnxw)/ind ...
- SQL2008中sa账户无法登陆问题
实验需要用Java与SQL Server连接,因为使用的 SQL 2008 Express Edition 是基于 Visual Studio2010 安装包安装时一起安装的,所以为了方便数据库的操作 ...