xgboost 里边的gain freq, cover
assuming that you're using xgboost to fit boosted trees for binary classification. The importance matrix is actually a data.table object with the first column listing the names of all the features actually used in the boosted trees.
The meaning of the importance data table is as follows:
- The Gain implies the relative contribution of the corresponding feature to the model calculated by taking each feature's contribution for each tree in the model. A higher value of this metric when compared to another feature implies it is more important for generating a prediction.
- The Cover metric means the relative number of observations related to this feature. For example, if you have 100 observations, 4 features and 3 trees, and suppose feature1 is used to decide the leaf node for 10, 5, and 2 observations in tree1, tree2 and tree3 respectively; then the metric will count cover for this feature as 10+5+2 = 17 observations. This will be calculated for all the 4 features and the cover will be 17 expressed as a percentage for all features' cover metrics.
- The Frequence (frequency) is the percentage representing the relative number of times a particular feature occurs in the trees of the model. In the above example, if feature1 occurred in 2 splits, 1 split and 3 splits in each of tree1, tree2 and tree3; then the weightage for feature1 will be 2+1+3 = 6. The frequency for feature1 is calculated as its percentage weight over weights of all features.
The Gain is the most relevant attribute to interpret the relative importance of each feature.
Gain is the improvement in accuracy brought by a feature to the branches it is on. The idea is that before adding a new split on a feature X to the branch there was some wrongly classified elements, after adding the split on this feature, there are two new branches, and each of these branch is more accurate (one branch saying if your observation is on this branch then it should be classified as 1, and the other branch saying the exact opposite).
Cover measures the relative quantity of observations concerned by a feature.
Frequency is a simpler way to measure the Gain. It just counts the number of times a feature is used in all generated trees. You should not use it (unless you know why you want to use it).
xgboost 里边的gain freq, cover的更多相关文章
- 【原创】xgboost 特征评分的计算原理
xgboost是基于GBDT原理进行改进的算法,效率高,并且可以进行并行化运算: 而且可以在训练的过程中给出各个特征的评分,从而表明每个特征对模型训练的重要性, 调用的源码就不准备详述,本文主要侧重的 ...
- 小巧玲珑:机器学习届快刀XGBoost的介绍和使用
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:张萌 序言 XGBoost效率很高,在Kaggle等诸多比赛中使用广泛,并且取得了不少好成绩.为了让公司的算法工程师,可以更加方便的 ...
- R语言︱XGBoost极端梯度上升以及forecastxgb(预测)+xgboost(回归)双案例解读
XGBoost不仅仅可以用来做分类还可以做时间序列方面的预测,而且已经有人做的很好,可以见最后的案例. 应用一:XGBoost用来做预测 ------------------------------- ...
- XGBoost类库使用小结
在XGBoost算法原理小结中,我们讨论了XGBoost的算法原理,这一片我们讨论如何使用XGBoost的Python类库,以及一些重要参数的意义和调参思路. 本文主要参考了XGBoost的Pytho ...
- 大白话5分钟带你走进人工智能-第32节集成学习之最通俗理解XGBoost原理和过程
目录 1.回顾: 1.1 有监督学习中的相关概念 1.2 回归树概念 1.3 树的优点 2.怎么训练模型: 2.1 案例引入 2.2 XGBoost目标函数求解 3.XGBoost中正则项的显式表达 ...
- XGBboost 特征评分的计算原理
xgboost是基于GBDT原理进行改进的算法,效率高,并且可以进行并行化运算,而且可以在训练的过程中给出各个特征的评分,从而表明每个特征对模型训练的重要性, 调用的源码就不准备详述,本文主要侧重的是 ...
- XGB算法梳理
学习内容: 1.CART树 2.算法原理 3.损失函数 4.分裂结点算法 5.正则化 6.对缺失值处理 7.优缺点 8.应用场景 9.sklearn参数 1.CART树 CART算法是一种二分递归分割 ...
- XGBoost、LightGBM的详细对比介绍
sklearn集成方法 集成方法的目的是结合一些基于某些算法训练得到的基学习器来改进其泛化能力和鲁棒性(相对单个的基学习器而言)主流的两种做法分别是: bagging 基本思想 独立的训练一些基学习器 ...
- xgboost的sklearn接口和原生接口参数详细说明及调参指点
from xgboost import XGBClassifier XGBClassifier(max_depth=3,learning_rate=0.1,n_estimators=100,silen ...
随机推荐
- 数据库表数据传输到Oracle方案
方案步骤为:数据导出到文件(增量或全量),通知接口文件就绪(上传到ftp或提供下载url),接收方下载文件,解析文件并入库.Oracle需要建立对应的临时表和正式表,入库步骤为:清空临时表,批量插入数 ...
- JS 实现关闭浏览器
$('#exitSystem').on('click',function(){ if(confirm("确定要退出系统并关闭浏览器吗?")){ //关闭浏览器的方法只适用i ...
- 阻塞队列之六:LinkedBlockingDeque
一.LinkedBlockingDeque简介 java6增加了两种容器类型,Deque和BlockingDeque,它们分别对Queue和BlockingQueue进行了扩展. Deque是一个双端 ...
- STL算法与树结构模板
STL算法 STL 算法是一些模板函数,提供了相当多的有用算法和操作,从简单如for_each(遍历)到复杂如stable_sort(稳定排序),头文件是:#include <algorithm ...
- 淘宝开源Web服务器Tengine基本安装步骤
Tengine 是由淘宝核心系统部基于Nginx开发的Web服务器,它在Nginx的基础上,针对大访问量 网站的需求,添加了很多功能和特性.Tengine的性能和稳定性已经在大型的网站如淘宝网,淘宝商 ...
- FreeRADIUS 、DaloRADIUS 搭建记录
一. 安装环境 系统环境:centos6.5 IP:192.168.30.242 hostname:vpn.org 软件:PPTP.LAMP均已安装.(请确保这些正常安装,并能使用). 二. 软件 ...
- TreeGrid
TreeGrid是树形表格,为了展示成树形,比数据表格主要增加了以下两点: 1.表格属性中设置 idField.treeField 两个属性:idField 表示用于区分上下级的主键,treeFiel ...
- LNK2026: 模块对于 SAFESEH 映像是不安全的<转>
转自VC错误:http://www.vcerror.com/?p=162 错误描述: 在使用VS2012编译工程时,提示错误:" error LNK2026: 模块对于 SAFESEH 映像 ...
- C++提高编译与链接速度的资料
1,https://blog.csdn.net/lihao21/article/details/47610309 2,https://www.zhihu.com/question/37330979 3 ...
- PHP - 请求阻塞,Session写阻塞
之前写某些代码的时候,发现用户莫名奇妙地阻塞了,而且这种阻塞的情况还比较难以形容: 使用session过程中,在开启session后,同一浏览器,执行同一程序,不同页面会被锁.不同浏览器不会出现这种情 ...