Linux驱动之异常处理体系结构简析
异常的概念在单片机中也接触过,它的意思是让CPU可以暂停当前的事情,跳到异常处理程序去执行。以前写单片机裸机程序属于前后台程序,前台指的就是mian函数里的while(1)大循环,后台指的就是产生异常后的处理程序。ARM9有以下几种异常模式:

ARM架构的异常向量的地址可以是0x00000000,也可以是0xffff0000,Linux使用地址0xffff0000。在初始化时先将中断向量表放到0xffff0000处,在init/main.c的start_kernel函数里的trap_init();函数中处理具体代码为:
void __init early_trap_init(void)
{
...
...
/*将中断向量表的拷贝到vectors处*/
memcpy((void *)vectors, __vectors_start, __vectors_end - __vectors_start);//vectors=CONFIG_VECTORS_BASE=0xffff0000在配置内核时生成
//位于include\linux\Autoconf.h中
/*将中断向量表的跳转地址的处理代码拷贝到vectors+0x200处*/
memcpy((void *)vectors + 0x200, __stubs_start, __stubs_end - __stubs_start);
...
...
}
下面将以IRQ异常处理为例子描述完整的异常处理流程
1、IRQ异常处理过程,这个异常的产生通常是可以由硬件配置的,S3C2440的中断结构最终都会反应在IRQ异常上
继续看到异常向量表,我们以产生IRQ异常为例:它位于arch\arm\kernel\entry-armv.S中,可以看到它跳转到了vector_irq + stubs_offset 处
.equ stubs_offset, __vectors_start + 0x200 - __stubs_start//计算跳转地址的偏移量
.globl __vectors_start
__vectors_start:
swi SYS_ERROR0 //复位异常处理程序
b vector_und + stubs_offset
ldr pc, .LCvswi + stubs_offset //软件中断异常处理程序
b vector_pabt + stubs_offset
b vector_dabt + stubs_offset
b vector_addrexcptn + stubs_offset
b vector_irq + stubs_offset //跳转到IRQ的异常处理程序,b是位置无关码,其中vector_irq调用了vector_stub宏
b vector_fiq + stubs_offset
搜索vector_irq 发现没有搜到,它其实是调用vector_stub宏生成的。这个宏后面介绍,先看到vector_stub irq,它最终生成vector_irq
.globl __stubs_start //调用vector_stub宏定义的变量的开始地址
__stubs_start:
/*
* Interrupt dispatcher
*/
vector_stub irq, IRQ_MODE, //调用vector_stub宏定义了vector_irq变量,IRQ异常跳转到这里开始执行。 .long __irq_usr @ (USR_26 / USR_32)
.long __irq_invalid @ (FIQ_26 / FIQ_32)
.long __irq_invalid @ (IRQ_26 / IRQ_32)
.long __irq_svc @ (SVC_26 / SVC_32)
.long __irq_invalid @
.long __irq_invalid @
.long __irq_invalid @
.long __irq_invalid @
.long __irq_invalid @
.long __irq_invalid @
.long __irq_invalid @ a
.long __irq_invalid @ b
.long __irq_invalid @ c
.long __irq_invalid @ d
.long __irq_invalid @ e
.long __irq_invalid @ f
接着介绍vector_stub的调用过程
vector_irq:
.if
sub lr, lr, //lr = lr-4
.endif @
@ Save r0, lr_<exception> (parent PC) and spsr_<exception>
@ (parent CPSR)
@
stmia sp, {r0, lr} @ save r0, lr//保存r0与lr寄存器到IRQ模式的堆栈
mrs lr, spsr //将spsr赋给lr
str lr, [sp, #] @ save spsr //将lr入栈,即spsr入栈 @
@ Prepare for SVC32 mode. IRQs remain disabled.
@
mrs r0, cpsr
eor r0, r0, #(\mode ^ SVC_MODE)
msr spsr_cxsf, r0 //将r0的值赋给spsr_cxsf,此时的状态还是处于IRQ模式 @
@ the branch table must immediately follow this code
@
and lr, lr, #0x0f //lr=lr&0x0f,lr起始就是spsr的值,它保存了进入IRQ模式前的CPU模式,其实是5位控制的,这里只用到4位,用来跳转到不同的处理函数
mov r0, sp //将管理模式的sp的值给r0
ldr lr, [pc, lr, lsl #] //lr = *(pc+lr<<2)。如果在进入IRQ之前是用户模式即是从应用层进入的,那么lr = pc = __irq_usr.否则是管理模式也就是处于内核层时发生了IRQ异常 lr = pc+12=__irq_svc
movs pc, lr @ branch to handler in SVC mode//将lr的值给pc,同时将spsr的值赋给cpsr,此时才是进入了管理模式
.endm
这个宏执行完成之后将进入SVC模式,然后调用__irq_usr或者__irq_svc。以__irq_usr为例继续说明异常函数调用过程
__irq_usr:
usr_entry //入口的一些处理,保存寄存器到堆栈
get_thread_info tsk //得到线程信息
irq_handler //真正的异常处理
b ret_to_user //切换回异常前的状态,将堆栈的寄存器出栈
可以看到这个函数显示保存一些寄存器数据然后调用irq_handler这个真正的异常处理函数,先是判断INTPND寄存器是否有某一位被置1,如果置1,说明有中断发生,然后从INTOFFSET寄存器取得记录的中断号,经过处理后放入r0,然后irq_handler最终调用了这个C函数。最后再将寄存器恢复到异常前的状态。IRQ异常处理结束
.macro irq_handler
get_irqnr_preamble r5, lr
: get_irqnr_and_base r0, r6, r5, lr
movne r1, sp
@
@ routine called with r0 = irq number, r1 = struct pt_regs *
@
adrne lr, 1b
bne asm_do_IRQ//最终调用了asm_do_IRQ。这个是C函数 #ifdef CONFIG_SMP
/*
* XXX
*
* this macro assumes that irqstat (r6) and base (r5) are
* preserved from get_irqnr_and_base above
*/
test_for_ipi r0, r6, r5, lr
movne r0, sp
adrne lr, 1b
bne do_IPI #ifdef CONFIG_LOCAL_TIMERS
test_for_ltirq r0, r6, r5, lr
movne r0, sp
adrne lr, 1b
bne do_local_timer
#endif
#endif .endm
Linux驱动之异常处理体系结构简析的更多相关文章
- Linux驱动之中断处理体系结构简析
S3C2440中的中断处理最终是通过IRQ实现的,在Linux驱动之异常处理体系结构简析已经介绍了IRQ异常的处理过程,最终分析到了一个C函数asm_do_IRQ,接下来继续分析asm_do_IRQ, ...
- Linux驱动之输入子系统简析
输入子系统由驱动层.输入子系统核心.事件处理层三部分组成.一个输入事件,如鼠标移动.键盘按下等通过Driver->Inputcore->Event handler->userspac ...
- Linux 目录结构学习与简析 Part2
linux目录结构学习与简析 by:授客 QQ:1033553122 ---------------接Part 1-------------- #1.查看CPU信息 #cat /proc/cpuinf ...
- Linux网络性能优化方法简析
Linux网络性能优化方法简析 2010-12-20 10:56 赵军 IBMDW 字号:T | T 性能问题永远是永恒的主题之一,而Linux在网络性能方面的优势则显而易见,这篇文章是对于Linux ...
- Linux 目录结构学习与简析 Part1
linux目录结构学习与简析 by:授客 QQ:1033553122 说明: / linux系统目录树的起点 =============== /bin User Bi ...
- Linux内核poll/select机制简析
0 I/O多路复用机制 I/O多路复用 (I/O multiplexing),提供了同时监测若干个文件描述符是否可以执行IO操作的能力. select/poll/epoll 函数都提供了这样的机制,能 ...
- Linux Hugetlbfs内核源码简析-----(二)Hugetlbfs挂载
本文只讨论执行"mount none /mnt/huge -t hugetlbfs"命令后,mount系统调用的执行过程(基于Linux-3.4.51),不涉及进程相关的细节. m ...
- Linux之用户和用户组简析
学习网址:http://c.biancheng.net/linux_tutorial/60/
- Linux驱动之触摸屏程序编写
本篇博客分以下几部分讲解 1.介绍电阻式触摸屏的原理 2.介绍触摸屏驱动的框架(输入子系统) 3.介绍程序用到的结构体 4.介绍程序用到的函数 5.编写程序 6.测试程序 1.介绍电阻式触摸屏的原理 ...
随机推荐
- Zookeeper 集群搭建--单机伪分布式集群
一. zk集群,主从节点,心跳机制(选举模式) 二.Zookeeper集群搭建注意点 1.配置数据文件 myid 1/2/3 对应 server.1/2/3 2.通过./zkCli.sh -serve ...
- docker-compose 安装redis sentinel,共享主机网络模式
采坑记录: docker sentinel模式安装完后因为是使用bridge模式,所以只有docker中运行的程序才能访问.刚开始尝试使用端口映射,返现sentinel返回的地址依然是docker的内 ...
- 一次Windows 安装问题
在 thinpad x250上安装 windows 10时,提示"安装程序无法创建新的系统分区,也无法定位现有系统分区". x250 的主板上自带一个16G的闪存且标识为 主分区, ...
- access十万级数据分页
最近的一个项目采用winform+access,但后来发现客户那边的数据量比较大,有数十万条数据.用sql语句进行分页,每次翻页加载都需要8秒钟左右,实在难以忍受. 后来百度了一下,发现一篇文章我的A ...
- 1131(★、※)Subway Map
思路:DFS遍历 #include <iostream> #include <map> #include <vector> #include <cstdio& ...
- 解决mysqli的中文乱码问题
有时候我们向服务器传汉字,出现内容为空,或???的问题,是因为mysqli对utf8的解码属于 Unicode码,会解析为 Unicode 码:所以我们要对内设置成gbk码, 尽管gbk码,很古来,但 ...
- Program type already present: android.support.v4.widget.EdgeEffectCompat
1.确保所有依赖包的 implementation 'com.android.support:appcompat-v7:25.4.0'是一样的 2.确保最外层的build.gradle中增加如下代码: ...
- 刘志梅 201771010115 《面向对象程序设计(java)》 第八周学习总结
实验六 接口的定义与使用 实验时间 2018-10-18 1.实验目的与要求 (1) 接口定义:接口不是类,而是对类的一组需求描述,这些类要遵从接口描述的统一格式进行定义:由常量和一组抽象方法组成:接 ...
- 自然语言处理(NLP)入门学习资源清单
Melanie Tosik目前就职于旅游搜索公司WayBlazer,她的工作内容是通过自然语言请求来生产个性化旅游推荐路线.回顾她的学习历程,她为期望入门自然语言处理的初学者列出了一份学习资源清单. ...
- vue路由的钩子函数和跳转
首页可以控制导航跳转,beforeEach,afterEach等,一般用于页面title的修改.一些需要登录才能调整页面的重定向功能. beforeEach主要有3个参数to,from,next. t ...