【BZOJ1802】[AHOI2009]checker(动态规划)

题面

BZOJ

洛谷

题解

首先自己观察一波,发现如果有相邻两个格子都是红色的话,那么显然可以在任意位置都存在一个跳棋。可以让两个位置反复互相跳就好了。这样子第一问的答案显然就是\(0\),否则的话第一问的答案就是偶数位置上\(0\)的个数。

如果没有相邻的两个位置都是红格子,我们还可以得出第二问的答案就是偶数位置上红格子的数目。

现在有两个红格子相邻,设\(f[i]\)表示在\(i\)这个位置要出现一个棋子的最小加入的跳棋数目,显然可以暴力\(dp\)。那么最终的答案就是所有偶数位置上的\(f\)的和。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 1010
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,a[MAX];ll f[MAX];bool fl;
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=3;i<=n;++i)
if(a[i]&&a[i-1])fl=true;
if(!fl)
{
int s[2]={0,0};
for(int i=2;i<=n;i+=2)s[a[i]]+=1;
printf("%d\n%d\n",s[0],s[1]);
return 0;
}
puts("0");memset(f,63,sizeof(f));
for(int i=2;i<=n;++i)if(a[i])f[i]=1;
for(int i=2;i<n;++i)
if(a[i]&&a[i+1])
{
for(int j=i-1;j>1;--j)f[j]=min(f[j],f[j+1]+f[j+2]);
for(int j=i+2;j<=n;++j)f[j]=min(f[j],f[j-1]+f[j-2]);
}
ll ans=0;
for(int i=2;i<=n;i+=2)ans+=f[i];
printf("%lld\n",ans);
return 0;
}

【BZOJ1802】[AHOI2009]checker(动态规划)的更多相关文章

  1. BZOJ1802: [Ahoi2009]checker(性质分析 dp)

    题意 题目链接 Sol 一个不太容易发现但是又很显然的性质: 如果有两个相邻的红格子,那么第一问答案为0, 第二问可以推 否则第一问答案为偶数格子上的白格子数,第二问答案为偶数格子上的红格子数 #in ...

  2. BZOJ 1802: [Ahoi2009]checker

    题目描述 若有两个红格相邻 第一问的答案为0,所有位置上的棋子都可以通过在这两个格子上放棋子得到 第二设f[i]表示想让第i个格子上有棋子需要放的棋子数 若没有,第一问答案为偶数格子上白格的个数,第二 ...

  3. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  4. 【BZOJ1801】【AHOI2009】中国象棋(动态规划)

    [BZOJ1801][AHOI2009]中国象棋(动态规划) 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个 ...

  5. 【BZOJ1799】[AHOI2009]同类分布(动态规划)

    [BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...

  6. [luogu2051][bzoj1801][AHOI2009]chess中国象棋【动态规划】

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  7. BZOJ1801 [Ahoi2009]chess 中国象棋 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1801 题意概括 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请 ...

  8. P2051 [AHOI2009]中国象棋(动态规划)

    思路 好像是一道挺水的计数的,不知道为什么会是紫题 显然每行和每列最多放两个 首先考虑状压,然后发现三进制状压可做,但是三进制太麻烦了,可以拆成两个二进制,一个表示该列是否是放了一个的,一个表示该列是 ...

  9. 【洛谷2051】[AHOI2009] 中国象棋(烦人的动态规划)

    点此看题面 大致题意: 让你在一张\(N*M\)的棋盘上摆放炮,使其无法互相攻击,问有多少种摆法. 辟谣 听某大佬说这是一道状压\(DP\)题,于是兴冲冲地去做,看完数据范围彻底懵了:\(N≤100\ ...

随机推荐

  1. kubectl客户端工具远程连接k8s集群

    一.概述 一般情况下,在k8smaster节点上集群管理工具kubectl是连接的本地http8080端口和apiserver进行通讯的,当然也可以通过https端口进行通讯前提是要生成证书.所以说k ...

  2. Tensorflow实例:利用LSTM预测股票每日最高价(一)

    RNN与LSTM 这一部分主要涉及循环神经网络的理论,讲的可能会比较简略. 什么是RNN RNN全称循环神经网络(Recurrent Neural Networks),是用来处理序列数据的.在传统的神 ...

  3. ElasticSearch5.5.1插件分类

    ElasticSearch5.5.1插件分类 附官网介绍:https://www.elastic.co/guide/en/elasticsearch/plugins/5.5/intro.html 一. ...

  4. python实现微信自动回复机器人

    一 简单介绍 wxpy基于itchat,使用了 Web 微信的通讯协议,,通过大量接口优化提升了模块的易用性,并进行丰富的功能扩展.实现了微信登录.收发消息.搜索好友.数据统计等功能. 总而言之,可用 ...

  5. Django后端彻底解决跨域问题

    最近在接一个前后端分离的项目,后端使用的django-restframework,前端使用的Vue.后端跑起来后,发现前端在访问后端API时出了了跨域的问题. 类似如下报错: 关于跨域问题,之前这篇文 ...

  6. Ionic 2 官方示例程序 Super Starter

    原文发表于我的技术博客 本文分享了 Ionic 2 官方示例程序 Super Starter 的简要介绍与安装运行的方法,最好的学习示例代码,项目共包含了 14 个通用的页面设计,如:引导页.主页面详 ...

  7. Ubuntu16.04下安装QQ的完整操作记录(经验证可用)

    本机安装了Ubuntu16.04系统,用于日常运维办公.打算在Ubuntu上安装QQ,如下操作记录也使用于Ubuntu18.04: 1)先下载特制的QQ程序包(其实就是基于Wine容器做了一些封装,程 ...

  8. linux下rsync和tar增量备份梳理

    前面总结过一篇全量备份/增量备份/差异备份说明,下面介绍下linux下rsync和tar两种增量备份的操作记录: 1)rsync备份 rsync由于本身的特性,在第一次rsync备份后,以后每次都只是 ...

  9. Python数据类型-7

    什么数据类型. int 1,2,3用于计算. bool:True,False,用户判断. str:存储少量数据,进行操作 'fjdsal' '二哥','`13243','fdshklj' '战三,李四 ...

  10. 电梯调度系统(界面由C图形库编绘)

    1.编程题目 电梯调度系统 2.结对编程组员 黄冠译,刘畅 3.编程语言 C语言图形库 4题目要求 编写人员:刘畅,黄冠译 代码如下: # include <stdio.h> # incl ...