洛谷P3628 [APIO2010]特别行动队(动态规划,斜率优化,单调队列)
安利蒟蒻斜率优化总结
由于人是每次都是连续一段一段地选,所以考虑直接对\(x\)记前缀和,设现在的\(x_i=\)原来的\(\sum\limits_{j=1}^ix_i\)。
设\(f_i\)为安排前\(i\)个人的最大值\((f_0=0)\)
\(f_i=\max\limits_{j=0}^{i-1}\{f_j+a(x_i-x_j)^2+b(x_i-x_j)+c\}\)
\(\quad=\max\limits_{j=0}^{i-1}\{f_j-2ax_ix_j+ax_j^2-bx_j\}+ax_i^2+bx_i+c\)
决策\(j\)比\(k\)优当且仅当
\]
\]
于是每个决策可以看成是一个点\((x_i,y_i)(y_i=f_i+ax_i^2-bx_i)\)
不用考虑变号。因为\(a<0\),\(x_i\)递增,斜率\(2ax_i\)递减,所以我们用单调队列维护一个下凸包就行了。依旧是维护队首为当前最优解。
当然注意这里的转移是从\(0\)到\(i-1\),所以和土地征用有点点不一样,要先求出\(f_i\)再加入决策点\(i\)。
纯天然代码
#include<cstdio>
#define RG register
#define R RG int
#define G c=getchar()
#define Calc(j,k) (y[j]-y[k])/(x[j]-x[k])//求斜率
const int N=1e6+9;
int q[N];
double f[N],k[N],x[N],y[N];//变量名同上
inline int in(){
RG char G;RG bool f=0;
while(c<'-')G;
if(c=='-')f=1,G;
R x=c&15;G;
while(c>'-')x=x*10+(c&15),G;
return f?-x:x;
}
int main(){
R n=in(),i,h,t;
RG double a=in(),b=in(),c=in(),now;
for(i=h=t=1;i<=n;++i){
x[i]=x[i-1]+in();//前缀和
now=2*a*x[i];//当前斜率
while(h<t&&k[h]>=now)++h;
f[i]=-now*x[q[h]]+y[q[h]]+(a*x[i]+b)*x[i]+c;//先求fi,根据定义式求
y[i]=f[i]+(a*x[i]-b)*x[i];//yi跟着求
while(h<t&&k[t-1]<=Calc(q[t],i))--t;//维护凸包
k[t]=Calc(q[t],i);q[++t]=i;
}
printf("%.0lf\n",f[n]);
return 0;
}
洛谷P3628 [APIO2010]特别行动队(动态规划,斜率优化,单调队列)的更多相关文章
- 洛谷P3628 [APIO2010]特别行动队(斜率优化)
传送门 先写出转移方程$$dp[i]=max\{dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum[j])+c\}$$ 假设$j$比$k$更优,则有$$dp[j]+a*(s ...
- 洛谷3628 APIO2010特别行动队(斜率优化)
考虑最普通的\(dp\) \[dp[i]=max(dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum[j])+c \] qwq 由于演算纸扔掉了 qwq 所以直接给出最后的 ...
- P3628 [APIO2010]特别行动队(斜率优化dp)
P3628 [APIO2010]特别行动队 设$s[i]$为战斗力前缀和 显然我们可以列出方程 $f[i]=f[j]+a*(s[i]-s[j])^{2}+b*(s[i]-s[j])+c$ $f[i]= ...
- [洛谷P3628] [APIO2010]特别行动队
洛谷题目链接:[APIO2010]特别行动队 题目描述 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 \(n\) 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特别行动 ...
- [bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)
Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[ ...
- BZOJ1911 [Apio2010]特别行动队 - 动态规划 - 斜率优化
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 UPD(2018-04-01):用Latex重打了公式…… 题意概括 把一个整数序列划分成任意连续的段,使得划分出 ...
- 洛谷P3628 [APIO2010]特别行动队 斜率优化
裸题,注意队列下标不要写错 Code: #include<cstdio> #include<algorithm> #include<cmath> using nam ...
- 洛谷 P3628 [APIO2010]特别行动队
题意简述 将n个士兵分为若干组,每组连续,编号为i的士兵战斗力为xi 若i~j士兵为一组,该组初始战斗力为\( s = \sum\limits_{k = i}^{j}xk \),实际战斗力\(a * ...
- 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)
dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...
随机推荐
- Vue-父子组件传值
在 Vue 中,父子组件的关系可以总结为 prop 向下传递,事件向上传递.一.父组件向子组件传值 使用 Prop 传递数据,父组件的数据需要通过 prop 才能下发到子组件中,子组件要显式地用 pr ...
- 浅谈CDQ分治与偏序问题
初识CDQ分治 CDQ分治是一个好东西,一直听着dalao们说所以就去学了下. CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. ...
- Caffe源码中caffe.proto文件分析
Caffe源码(caffe version:09868ac , date: 2015.08.15)中有一些重要文件,这里介绍下caffe.proto文件. 在src/caffe/proto目录下有一个 ...
- JVM规范系列第6章:Java虚拟机指令集
一条 Java 虚拟机指令由一个特定操作的操作码和零至多个操作所使用到的操作数所构成. 虚拟机指令 = 操作码 + 操作数. 其中,操作码值分别为 254(0xfe)和 255(0xff),助记符分别 ...
- C#_图片存取数据库Winform
#region 用于在PictureBox控件中显示选择的图片 /// <summary> /// 用于在PictureBox控件中显示选择的图片 ...
- os模块 与 sys模块
os模块 os模块是与操作系统交互的一个接口 os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 os.chdir("dirname") 改变当前脚本工 ...
- centos7下部署iptables环境纪录(关闭默认的firewalle)
CentOS7默认的防火墙不是iptables,而是firewall.由于习惯了用iptables作为防火墙,所以在安装好centos7系统后,会将默认的firewall关闭,并另安装iptables ...
- 2016-03-22 OneZero团队 Daily Scrum Meeting
会议时间: 2016-03-22 9:33-9:57am 会议内容: 一.在原有Sprint Backlog基础上,我们加了亮点(摇一摇功能:随机选取一条记录在界面显示,以提醒主页君回忆) 需求分析图 ...
- 第三个Sprint冲刺第四天(燃尽图)
- Mock.js的简单使用
Mock.js 提供的种类有: 步骤: 首先安装:cnpm install mockjs 创建一个mock.js的文件,写好需要引入的数据格式 在main.js中引入mock.js文件: requir ...