AC Challenge(状压dp)
ACM-ICPC 2018 南京赛区网络预赛E:
题目链接https://www.jisuanke.com/contest/1555?view=challenges
Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.
However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi problems, the p_{i, 1}pi,1-th, p_{i, 2}pi,2-th, ......, p_{i, s_i}pi,si-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j≤n,0<j≤si,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.
"I wonder if I can leave the contest arena when the problems are too easy for me."
"No problem."
—— CCF NOI Problem set
If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai+bi points. (|a_i|, |b_i| \le 10^9)(∣ai∣,∣bi∣≤109).
Your task is to calculate the maximum number of points he can get in the contest.
Input
The first line of input contains an integer, nn, which is the number of problems.
Then follows nn lines, the ii-th line contains s_i + 3si+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai,bi,si,p1,p2,...,psias described in the description above.
Output
Output one line with one integer, the maximum number of points he can get in the contest.
Hint
In the first sample.
On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.
On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13 points.
On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.
On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.
On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.
So he can get 11+13+13+11+7=5511+13+13+11+7=55 points in total.
In the second sample, you should note that he doesn't have to solve all the problems.
样例输入1复制
5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4
样例输出1复制
55
样例输入2复制
1
-100 0 0
样例输出2复制
0
题目来源
题意:输入n 代表有道题目,接下来有n行,代表n道题目(从1--n),每一行先输入三个数 a b s, s代表后面还要输入s道题目的序号,
每解决完一道题目将花费一分钟的时间,每解决一道题目可以得到 (a*t + b)分(t代表时间,从0开始),而每道题目可以被解决前提是
它所对应的s道题目要先被解决,求可以得到的最大分数。
0<n<20
|a|,|b|<=1e9
思路:状压dp,具体实现请看代码
#include<cstdio>
#include<algorithm>
#define ll long long
#define mn -1e16
using namespace std;
int bit[1<<20];//记录每种状态下1的个数,相当与记录了到该状态时的时间(因为每一道题已被解决该状态下的二进制数对应的位置就为1,每做一道题要1分钟的时间)
int pre[1<<20];//用状态压缩来记录解题条件
ll dp[1<<22];
struct{
ll a,b;
}s[22];
int check(int a){
int i,sum;
sum=0;
for(i=0;i<20;i++){//记算1的个数
if((1<<i)&a)
sum++;
}
//printf("%d %d\n",a,sum);
return sum;
}
void init(){//预处理,求出对应状态下的时间
for(int i=0;i<(1<<20);i++){
bit[i]=check(i);
}
}
int main(){
int n;
int i,j,k;
int p;
init();
ll ans=0;
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%lld%lld%d",&s[i].a,&s[i].b,&k);
while(k--){//解题条件,记录要解决该题先要完成的题目
scanf("%d",&p);
pre[i]|=(1<<(p-1));//二进制记录条件
}
}
dp[0]=0;
for(i=1;i<(1<<n);i++){
dp[i]=mn;
for(j=0;j<n;j++){
if(i&(1<<j)){//找该状态下已被做的题目的情况
int f=i-(1<<j);//找寻第j题被做之前的情况
if((f&pre[j+1])==pre[j+1]&&dp[f]!=mn){//找寻满足条件并且已经遍历过的状态来推出现在的状态
dp[i]=max(dp[i],dp[f]+s[j+1].a*bit[i]+s[j+1].b);
}
}
}
ans=max(ans,dp[i]);
}
printf("%lld\n",ans);
return 0;
}
AC Challenge(状压dp)的更多相关文章
- 计蒜客 30994 - AC Challenge - [状压DP][2018ICPC南京网络预赛E题]
题目链接:https://nanti.jisuanke.com/t/30994 样例输入: 5 5 6 0 4 5 1 1 3 4 1 2 2 3 1 3 1 2 1 4 样例输出: 55 样例输入: ...
- ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP
题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest with n (0 < n \le 20)n(0& ...
- hdu 3247 AC自动+状压dp+bfs处理
Resource Archiver Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 100000/100000 K (Java/Ot ...
- hdu 2825 aC自动机+状压dp
Wireless Password Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- BZOJ1559 [JSOI2009]密码 【AC自动机 + 状压dp】
题目链接 BZOJ1559 题解 考虑到这是一个包含子串的问题,而且子串非常少,我们考虑\(AC\)自动机上的状压\(dp\) 设\(f[i][j][s]\)表示长度为\(i\)的串,匹配到了\(AC ...
- zoj3545Rescue the Rabbit (AC自动机+状压dp+滚动数组)
Time Limit: 10 Seconds Memory Limit: 65536 KB Dr. X is a biologist, who likes rabbits very much ...
- hdu2825 Wireless Password(AC自动机+状压dp)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission ...
- HDU 3247 Resource Archiver(AC自动机 + 状压DP + bfs预处理)题解
题意:目标串n( <= 10)个,病毒串m( < 1000)个,问包含所有目标串无病毒串的最小长度 思路:貌似是个简单的状压DP + AC自动机,但是发现dp[1 << n][ ...
- hdu 6086 -- Rikka with String(AC自动机 + 状压DP)
题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...
- UVALive - 4126 Password Suspects (AC自动机+状压dp)
给你m个字符串,让你构造一个字符串,包含所有的m个子串,问有多少种构造方法.如果答案不超过42,则按字典序输出所有可行解. 由于m很小,所以可以考虑状压. 首先对全部m个子串构造出AC自动机,每个节点 ...
随机推荐
- C#-----中使用using详解
1.using指令 using + 命名空间名字 例:using System; using System.Data; 2.using语句 定义一个范围,在范围结束时处理对象,出了这个范 ...
- K均值
K-means算法的工作流程 首先,随机确定k个初始点的质心:然后将数据集中的每一个点分配到一个簇中,即为每一个点找到距其最近的质心,并将其分配给该质心所对应的簇:该步完成后,每一个簇的质心更新为该簇 ...
- 模块 import 与from
什么是模块:就是一系列功能的集合体 模块的来源 :1内置模块 2 第三方模块 3 自定义模块 模块的格式: 1 使用python编写的.py文件 2 已被编译为共享库或DLL的C或C++扩展 ...
- 02: OpenStack
1.1 OpenStack各组件 1.Horizon(控制台),又名Dashboard 就是web展示界面操作平台,方便用户交互的 2.Nova(计算) 负责创建,调度,销毁云主机 3.Neutron ...
- D1图论最短路专题
第一题:poj3660 其实是Floyed算法的拓展:Floyd-Wareshall.初始时,若两头牛关系确定则fij = 1. 对于一头牛若确定的关系=n-1,这说明这头牛的排名是确定的. 通过寻找 ...
- python 基础知识点一
基础数据类型初始. 数字:int 12,3,45 + - * / ** int: bit_lenth()转化为2进制的最小位数. % 取余数 ps:type() 字符串转化成数字:int(str ...
- 【Mac】【环境变量】
Mac配置环境变量的地方 1./etc/profile (建议不修改这个文件 ) 全局(公有)配置,不管是哪个用户,登录时都会读取该文件. 2./etc/bashrc (一般在这个 ...
- robot framework测试数据语法
Robot Framework通过文件的扩展名来选择使用何种解析器. 扩展名不分大小写. 可以识别的扩展名包括: HTML: .html, .htm 和 .xhtml TSV: .tsv 纯文本: . ...
- Series 和 Dataframe 的 rank 方法
rank 方法返回的是当前数据的排名名次,而 sort——values() 返回的是排名之后数据的结果 rank()用法 sort_values()用法
- 『Python CoolBook』C扩展库_其四_结构体操作与Capsule
点击进入项目 一.Python生成C语言结构体 C语言中的结构体传给Python时会被封装为胶囊(Capsule), 我们想要一个如下结构体进行运算,则需要Python传入x.y两个浮点数, type ...