ACM-ICPC 2018 南京赛区网络预赛E:

题目链接https://www.jisuanke.com/contest/1555?view=challenges

Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.

However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi​ problems, the p_{i, 1}pi,1​-th, p_{i, 2}pi,2​-th, ......, p_{i, s_i}pi,si​​-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j​≤n,0<j≤si​,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.

"I wonder if I can leave the contest arena when the problems are too easy for me."
"No problem."
—— CCF NOI Problem set

If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai​+bi​ points. (|a_i|, |b_i| \le 10^9)(∣ai​∣,∣bi​∣≤109).

Your task is to calculate the maximum number of points he can get in the contest.

Input

The first line of input contains an integer, nn, which is the number of problems.

Then follows nn lines, the ii-th line contains s_i + 3si​+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai​,bi​,si​,p1​,p2​,...,psi​​as described in the description above.

Output

Output one line with one integer, the maximum number of points he can get in the contest.

Hint

In the first sample.

On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.

On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13 points.

On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.

On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.

On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.

So he can get 11+13+13+11+7=5511+13+13+11+7=55 points in total.

In the second sample, you should note that he doesn't have to solve all the problems.

样例输入1复制

5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4

样例输出1复制

55

样例输入2复制

1
-100 0 0

样例输出2复制

0

题目来源

ACM-ICPC 2018 南京赛区网络预赛

题意:输入n 代表有道题目,接下来有n行,代表n道题目(从1--n),每一行先输入三个数 a b s,  s代表后面还要输入s道题目的序号,

每解决完一道题目将花费一分钟的时间,每解决一道题目可以得到 (a*t + b)分(t代表时间,从0开始),而每道题目可以被解决前提是

它所对应的s道题目要先被解决,求可以得到的最大分数。

0<n<20

|a|,|b|<=1e9

思路:状压dp,具体实现请看代码

#include<cstdio>
#include<algorithm>
#define ll long long
#define mn -1e16
using namespace std;
int bit[1<<20];//记录每种状态下1的个数,相当与记录了到该状态时的时间(因为每一道题已被解决该状态下的二进制数对应的位置就为1,每做一道题要1分钟的时间)
int pre[1<<20];//用状态压缩来记录解题条件
ll dp[1<<22];
struct{
ll a,b;
}s[22];
int check(int a){
int i,sum;
sum=0;
for(i=0;i<20;i++){//记算1的个数
if((1<<i)&a)
sum++;
}
//printf("%d %d\n",a,sum);
return sum;
}
void init(){//预处理,求出对应状态下的时间
for(int i=0;i<(1<<20);i++){
bit[i]=check(i);
}
}
int main(){
int n;
int i,j,k;
int p;
init();
ll ans=0;
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%lld%lld%d",&s[i].a,&s[i].b,&k);
while(k--){//解题条件,记录要解决该题先要完成的题目
scanf("%d",&p);
pre[i]|=(1<<(p-1));//二进制记录条件
}
}
dp[0]=0;
for(i=1;i<(1<<n);i++){
dp[i]=mn;
for(j=0;j<n;j++){
if(i&(1<<j)){//找该状态下已被做的题目的情况
int f=i-(1<<j);//找寻第j题被做之前的情况
if((f&pre[j+1])==pre[j+1]&&dp[f]!=mn){//找寻满足条件并且已经遍历过的状态来推出现在的状态
dp[i]=max(dp[i],dp[f]+s[j+1].a*bit[i]+s[j+1].b);
}
}
}
ans=max(ans,dp[i]);
}
printf("%lld\n",ans);
return 0;
}

  

AC Challenge(状压dp)的更多相关文章

  1. 计蒜客 30994 - AC Challenge - [状压DP][2018ICPC南京网络预赛E题]

    题目链接:https://nanti.jisuanke.com/t/30994 样例输入: 5 5 6 0 4 5 1 1 3 4 1 2 2 3 1 3 1 2 1 4 样例输出: 55 样例输入: ...

  2. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP

    题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest with n (0 < n \le 20)n(0& ...

  3. hdu 3247 AC自动+状压dp+bfs处理

    Resource Archiver Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Ot ...

  4. hdu 2825 aC自动机+状压dp

    Wireless Password Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. BZOJ1559 [JSOI2009]密码 【AC自动机 + 状压dp】

    题目链接 BZOJ1559 题解 考虑到这是一个包含子串的问题,而且子串非常少,我们考虑\(AC\)自动机上的状压\(dp\) 设\(f[i][j][s]\)表示长度为\(i\)的串,匹配到了\(AC ...

  6. zoj3545Rescue the Rabbit (AC自动机+状压dp+滚动数组)

    Time Limit: 10 Seconds      Memory Limit: 65536 KB Dr. X is a biologist, who likes rabbits very much ...

  7. hdu2825 Wireless Password(AC自动机+状压dp)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission ...

  8. HDU 3247 Resource Archiver(AC自动机 + 状压DP + bfs预处理)题解

    题意:目标串n( <= 10)个,病毒串m( < 1000)个,问包含所有目标串无病毒串的最小长度 思路:貌似是个简单的状压DP + AC自动机,但是发现dp[1 << n][ ...

  9. hdu 6086 -- Rikka with String(AC自动机 + 状压DP)

    题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...

  10. UVALive - 4126 Password Suspects (AC自动机+状压dp)

    给你m个字符串,让你构造一个字符串,包含所有的m个子串,问有多少种构造方法.如果答案不超过42,则按字典序输出所有可行解. 由于m很小,所以可以考虑状压. 首先对全部m个子串构造出AC自动机,每个节点 ...

随机推荐

  1. vue计算属性和侦听器

    一.计算属性: main.js: var app = new Vue({ el: '#app', data: { math: 80, physics: 90, english: 30 }, compu ...

  2. Django-debug-toolbar的使用

    Django项目的开发过程中,离不开各种调试,那么,我们今天介绍一个工具,django debug toolbar,该工具为我们提供了更加丰富的调试信息,如提供session信息,SQL查询信息等等. ...

  3. QT下的darknet-GPU项目属性

    #------------------------------------------------- # # Project created by QtCreator 2018-08-04T19:39 ...

  4. FSMC_LCD

    1. TFT-LCD(Thin Film Transistor Liquid Crystal Display)[薄膜晶体管液晶显示器] 2. 液晶 物质在熔融状态或在溶液状态下虽然获得了液体物质的流动 ...

  5. Win32汇编学习(11):对话框(2)

    我们将进一步学习对话框,探讨如何把对话框当成输入设备.如果您看了前一篇文章,那就会发现这次的例子只有少量的改动,就是把我们的对话框窗口附属到主窗口上.另外,我们还要学习通用对话框的用法. 理论: 把对 ...

  6. 20175312 2018-2019-2 《Java程序设计》第4周学习总结

    20175312 2018-2019-2 <Java程序设计>第4周学习总结 教材学习内容总结 已依照蓝墨云班课的要求完成了第五章的学习,主要的学习渠道是PPT,和书的课后习题. 总结如下 ...

  7. 进程池 和 multiprocessing.Pool模块

    进程池的概念 在程序实际处理问题过程中,忙时会有成千上万的任务需要被执行,闲时可能只有零星任务.那么在成千上万个任务需要被执行的时候,我们就需要去创建成千上万个进程么?首先,创建进程需要消耗时间,销毁 ...

  8. Linux修改磁盘挂载目录

    比如想把已经挂载在home目录上的硬盘挂载到data目录上, 如下操作 #df -h(查看分区情况及数据盘名称) # mkdir /data(如果没有data目录就创建,否则此步跳过) # umoun ...

  9. Spring中ClassPathXmlApplication与FileSystemXmlApplicationContext的区别

    Spring中ClassPathXmlApplication与FileSystemXmlApplicationContext的区别 一.概述 在项目中遇到加载不到Spring配置文件,简单分析后,写此 ...

  10. dump总结

    •http://blog.csdn.net/lkforce/article/details/60878295 •日志文件生成 •方法1 •jmap -dump:format=b,file=201703 ...