论文原文 https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_Single-Image_Crowd_Counting_CVPR_2016_paper.pdf

人群计数领域目前的研究进展

复现过程:

首先当然是准备数据集,我没有用论文作者的shanghaitech数据集,准备了malldataset数据集,反正都是大同小异啦。这篇文章的label有一点区别的就是它不是像很多分类的问题一样是0 1 啥的,而是整张图像,这还是我第一次遇到这样的问题,还是蛮新鲜的。

malldataset数据集下载

然后参见人群密度估计之MCNN密度图的生成,在MATLAB上写了程序:

clear;
load('perspective_roi.mat');
load('mall_gt.mat'); m=480;n=640;
m=m/4;
n=n/4;
mask = imresize(roi.mask,0.25); %图像缩小4倍
for i=1:2000 %2000幅图像
gt = frame{i}.loc; %第一个frame结构体的loc字段
gt = gt/4;
d_map = zeros(m,n);
for j=1:size(gt,1)
ksize = ceil(25/sqrt(pMapN(floor(gt(j,2)),1)));
ksize = max(ksize,7);
ksize = min(ksize,25);
radius = ceil(ksize/2);
sigma = ksize/2.5;
h = fspecial('gaussian',ksize,sigma);
x_ = max(1,floor(gt(j,1)));
y_ = max(1,floor(gt(j,2))); if (x_-radius+1<1)
for ra = 0:radius-x_-1
h(:,end-ra) = h(:,end-ra)+h(:,1);
h(:,1)=[];
end
end
if (y_-radius+1<1)
for ra = 0:radius-y_-1
h(end-ra,:) = h(end-ra,:)+h(1,:);
h(1,:)=[];
end
end
if (y_-radius+1<1)
for ra = 0:radius-y_-1
h(end-ra,:) = h(end-ra,:)+h(1,:);
h(1,:)=[];
end
end
if (x_+ksize-radius>n)
for ra = 0:x_+ksize-radius-n-1
h (:,1+ra) = h(:,1+ra)+h(:,end);
h(:,end) = [];
end
end
if(y_+ksize-radius>m)
for ra = 0:y_+ksize-radius-m-1
h (1+ra,:) = h(1+ra,:)+h(end,:);
h(end,:) = [];
end
end
d_map(max(y_-radius+1,1):min(y_+ksize-radius,m),max(x_-radius+1,1):min(x_+ksize-radius,n))...
= d_map(max(y_-radius+1,1):min(y_+ksize-radius,m),max(x_-radius+1,1):min(x_+ksize-radius,n))...
+ h;
end
map0_255 = Normalize(d_map)
% %方法1,保存为图片,再转为LMDB
% %把数组A中的数转换成字符串表示形式
str=num2str(i,'./density/seq_%06d.jpg');
%imwrite(d_map,str);
imshow( map0_255);
%方法2,直接转为HDF5
% trainLabels=permute(d_map,[2 1]);
% str=num2str(i,'./density_map/seq_%06d.h5');
% h5create(str,'/label',size(trainLabels),'Datatype','double');
% h5write(str,'/label',trainLabels); end 最后得到的图像规到0-255后输出为:

 

 
而d_map中的数据大致是,d_map是0-1之间的数值 

对d_map中的数值分析可以得知,就算归到0-255,数值依然很小,所以,成黑白状态。

说明:在pMapN中存的是透视变化的加权值,Roi表示在图像中定义的ROI区域,mask掩码可以实现只对ROI区域操作。

我用的深度学习框架是caffe。提取label是整个实验完成的第一关,前面说了,这个实验比较特殊,label是整张图像。一开始考虑用hdf5传输数据,然而事实证明速度太慢,所以就考虑用两个lmdb,一个装数据,另一个装label,只需要模仿着tools/convert_imageset.cpp 写一个data和label分开存放到两个LMDB里的代码,训练的时候用两个data layer读两个LMDB。

这里为了加速模型的收敛,我进行了减均值和归一化操作。由于数据集只有2000,并不像imagenet那样的大数据,为了提高泛化能力,适应不同的数据集,我这里的均值没有取2000个图片的均值,而是直接设置为127.5,归一化则除以128。

最终的测试程序如下:

  1. clear;clc;
  2. addpath('/home/caffe/matlab');
  3. caffe.reset_all();
  4. caffe.set_device(0);
  5. caffe.set_mode_gpu();
  6. model = 'deploy.prototxt';
  7. weights = 'network.caffemodel';
  8. net = caffe.Net(model, weights, 'test');
  9. cropImg=imread('IMG_12.jpg');  //cropImg是图像裁剪
  10. cropImg = cropImg(:, :, [3, 2, 1]);
  11. cropImg = permute(cropImg, [2, 1, 3]);  //permute(多维数组,[维数的组合])
  12. cropImg = single(cropImg);
  13. cropImg=imresize(cropImg,[480 640]);
  14. cropImg=(cropImg-127.5)/128;
  15. res = net.forward({cropImg});
  16. figure,imshow(cropImg,[]);
  17. figure,imagesc(res{1,1});
  18. count = sum(sum(res{1,1}))
  19. caffe.reset_all();

贴几个效果图:

 

MCNN多层神经网络论文笔记的更多相关文章

  1. 基于3D卷积神经网络的人体行为理解(论文笔记)(转)

    基于3D卷积神经网络的人体行为理解(论文笔记) zouxy09@qq.com http://blog.csdn.net/zouxy09 最近看Deep Learning的论文,看到这篇论文:3D Co ...

  2. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  3. ufldl学习笔记与编程作业:Multi-Layer Neural Network(多层神经网络+识别手写体编程)

    ufldl学习笔记与编程作业:Multi-Layer Neural Network(多层神经网络+识别手写体编程) ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在dee ...

  4. 【论文笔记】Progressive Neural Networks 渐进式神经网络

    Progressive NN Progressive NN是第一篇我看到的deepmind做这个问题的.思路就是说我不能忘记第一个任务的网络,同时又能使用第一个任务的网络来做第二个任务. 为了不忘记之 ...

  5. 论文笔记(1):Deep Learning.

    论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...

  6. 论文笔记(2):A fast learning algorithm for deep belief nets.

    论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm ...

  7. 论文笔记:Mastering the game of Go with deep neural networks and tree search

    Mastering the game of Go with deep neural networks and tree search Nature 2015  这是本人论文笔记系列第二篇 Nature ...

  8. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  9. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

随机推荐

  1. OAuth2认证和授权:AuthorizationCode认证

    前面的OAuth2认证,里面的授权服务器都是用的identityserver4搭建的 ids4没有之前一般都是Owin搭建授权服务器,博客园有很多 ids4出来后,一般都是用ids4来做认证和授权了, ...

  2. IRC 打字交流

    kali 里面用 apt-get install weechat 安装完成后,输入 weechat 命令就能启动客户端了 要想使用 IRC,就需要先连接一个 irc 服务器,选择了大名鼎鼎的 chat ...

  3. GDScript 格式化字符串

    GDScript offers a feature called format strings, which allows reusing text templates to succinctly c ...

  4. 解决IDEA无法安装插件的问题

    进入2018年以来,在IDEA插件中心中,安装插件经常安装失败,报连接超时的错误.如下: 我们发现连接IDEA的插件中心使用的是https的链接,我们在浏览器中使用https访问插件中心并不能访问. ...

  5. ACM-ICPC 2018 南京赛区网络预赛 Solution

    A. An Olympian Math Problem cout << n - 1 << endl; #include <bits/stdc++.h> using ...

  6. Linux如何编写自启动shell脚本

    1.需求分析 在很多情况下,程序员都做着重复枯燥的工作,虽然这些工作也是必须的,其实这些重复性的工作可以执行脚本替代:今天笔者就如何编写自启动shell脚本减少程序员开启服务器后的环境开启工作: 2. ...

  7. P1744 采购特价商品 最短路径

    P1744 采购特价商品 图论-----最短路径算法 弗洛伊德算法  O(n^3) 代码: #include<iostream> #include<cstdio> #inclu ...

  8. GoldenGate使用SQLEXEC和GETVAL实现码表关联

    使用OGG中的SQLEXEC参数,可以执行SQL语句或存储过程,再加上@GETVAL函数,可以在目标端获取源表没有的字段值.比如,源端有一个事实表和一个代码表COUNTRY_CODES,代码表中有两个 ...

  9. 通过gmapping和伪造的odom,完成Kinect建图

    传感器信息: 环境深度信息:sensor_msgs/laserScan -----> RGBD三维点云数据:通过ros功能包depthimage to laserscan完成深度相机数据转换成激 ...

  10. PHP防止网页快速刷新+代理ip访问

    前几天网站收到了一些CC攻击,比较郁闷...这里分享一下,防止网页自动刷新的方法以及阻止代理IP访问网站的方法,代码是分开的,两个功能,需要那个用那个,可以自定义时间间隔,这个代码不止可以防CC攻击, ...