RNN Train和Test Mismatch
李宏毅深度学习
https://www.bilibili.com/video/av9770302/?p=8
在看RNN的时候,你是不是也会觉得有些奇怪,
Train的过程中,
是把训练集中的结果作为下一步的输入
目标函数,是每一步的真实输出和训练集结果的交叉熵

Test的过程中,
是直接把每一步的输出作为下一步的输入

可以看到train和test的时候,每一步的输入是不一样的,这种不一致会带来什么问题?

对上面的树形结构,
表示学习的过程,如果网络完全正确的学习到我们的训练集,那就是左边的分支
但如果网络只在第一步没有学对,选择了B,而不是A
那么在test的时候,面对相同的句子,
那么它第一步会选B,但我们之前大部分的学习到的知识都集中在左边的分支,而右边的分支在学习的时候没有碰到过
所以对于网络后续的选择都只能乱选
从这个例子可以看出来,这种mismatch所带来的问题
那么问题是,为什么train的时候,不也把真实的输出作为下一步的输入?

将真实输出作为下一步的输入,会导致网络很难训练
原因是,真实的输出是会变化的,
如上图,开始第一步的输出是B,那么第二步学到的是,输入是B的时候,我们也应该得到一个B
但是随着train的继续,第一步的输出会变成A,趋向正确的结果,这样,之前在第二步学的知识就没有用了,

所以对于训练过程中,我们需要保持condition的稳定性
那到底应该怎么样做?
Scheduled Sampling的方法就是每次用一个随机sampling来决定是用哪一个作为下一步的输入

那这个方法不是也会有我们上面说的不稳定问题吗?
注意上面的曲线图,这里sampling的概率是不断变化的,图表示的是用reference的概率随着训练次数的变化
可以看出来,刚开始选reference的概率非常大,所以刚开始和普通的RNN训练没有区别
但是随着训练次数的增多,慢慢的用model的概率会越来越大
这样做的好处是啥,
因为刚开始的时候model不稳定,所以用reference,但是随着训练的进行,model的输出越来越稳定,这时就换成用medel的输出来训练
这样做的好处是,在condition相对稳定的情况下,又可以消除train和test的mismatch
RNN Train和Test Mismatch的更多相关文章
- RNN入门(二)识别验证码
介绍 作为RNN的第二个demo,笔者将会介绍RNN模型在识别验证码方面的应用. 我们的验证码及样本数据集来自于博客: CNN大战验证码,在这篇博客中,我们已经准备好了所需的样本数据集,不需要 ...
- 自己动手写RNN
说的再好,也不如实际行动,今天手写了一个RNN,没有使用Numpy库,自己写的矩阵运算方法,由于这也只是个学习用的demo,所以矩阵运算那一部分写的比较丑陋,见笑了. import com.mylea ...
- RNN-theano代码解析
import theano import numpy import os import pdb from theano import tensor as T from collections impo ...
- AlexeyAB DarkNet YOLOv3框架解析与应用实践(五)
AlexeyAB DarkNet YOLOv3框架解析与应用实践(五) RNNs in Darknet 递归神经网络是表示随时间变化的数据的强大模型.为了更好地介绍RNNs,我强烈推荐Andrej K ...
- RNN 入门教程 Part 4 – 实现 RNN-LSTM 和 GRU 模型
转载 - Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano ...
- RNN 入门教程 Part 3 – 介绍 BPTT 算法和梯度消失问题
转载 - Recurrent Neural Networks Tutorial, Part 3 – Backpropagation Through Time and Vanishing Gradien ...
- RNN 入门教程 Part 2 – 使用 numpy 和 theano 分别实现RNN模型
转载 - Recurrent Neural Networks Tutorial, Part 2 – Implementing a RNN with Python, Numpy and Theano 本 ...
- RNN神经网络和英中机器翻译的实现
本文系qitta的文章翻译而成,由renzhe0009实现.转载请注明以上信息,谢谢合作. 本文主要讲解以recurrent neural network为主,以及使用Chainer和自然语言处理其中 ...
- RNN and LSTM saliency Predection Scene Label
http://handong1587.github.io/deep_learning/2015/10/09/rnn-and-lstm.html //RNN and LSTM http://hando ...
随机推荐
- MySQL和Mongodb的区别与应用场景对比
MySQL是关系型数据库 优势: 在不同的引擎上有不同 的存储方式. 查询语句是使用传统的sql语句,拥有较为成熟的体系,成熟度很高. 开源数据库的份额在不断增加,mysql的份额页在持续增长. 缺点 ...
- Python 简单入门指北(一)
Python 简单入门指北(一) Python 是一门非常容易上手的语言,通过查阅资料和教程,也许一晚上就能写出一个简单的爬虫.但 Python 也是一门很难精通的语言,因为简洁的语法背后隐藏了许多黑 ...
- com.android.jack.CommandLine: Internal compiler error
Android studio编译的时候出现错误: SEVERE: com.android.jack.CommandLine: Internal compiler error Error:Executi ...
- NPS - 数字化营销 - 净推荐值
在获客成本高涨的时代,拥有一批超级用户,让企业更有本钱专注在提升产品及体验,创造更多的超级用户,形成良性循环.超级用户究竟要如何创造?超级用户可以定义成“忠诚用户当中最忠诚的一群人”,因此创造超级用户 ...
- 接口和多态都为JAVA技术的核心。
类必须实现接口中的方法,否则其为一抽象类. 实现中接口和类相同. 接口中可不写public,但在子类中实现接口的过程中public不可省. (如果剩去public则在编译的时候提示出错:对象无法从 ...
- 乾坤合一~Linux设备驱动之USB主机和设备驱动
如果不能陪你到最后 是否后悔当初我们牵手 如果当初没能遇见你 现在的我 在哪里逗留 所有的爱都是冒险 那就心甘情愿 等待我们一生中 所有悬念 我一往情深的恋人 她是我的爱人 她给我的爱就像是 带着露水 ...
- python 记录linux网速到文件。
import timefrom app.utils_ydf import LogManager logger = LogManager('network_monitor').get_logger_an ...
- github 开源 代码 学习 集合(转载)
一个支持多种item类型的recycleView依赖注入库 1.通过注解的方式方便的把ViewHolder注入到recycleView中. 2.去除findViewByID等冗余操作. 3.去除编写a ...
- Spring的Log4J配置器Log4jWebConfigurer介绍
1. Logj4简介 Log4j是Apache大旗下的一个子项目,它可以用来重定向应用日志文件的输出流,无论我们想将日志文件输出到控制台还是网络还是其他地方,都可以通过logj4来配置,如果我们的应用 ...
- win10 安装mysql
现在mysql压缩包:https://downloads.mysql.com/archives/community/ 在目录下新建data文件夹,my.ini文件,内容如下: [mysqld] bas ...