Luogu 1351 NOIP 2014 联合权值(贪心,计数原理)
Luogu 1351 NOIP 2014 联合权值(贪心,计数原理)
Description
无向连通图 G 有 n 个点,n-1 条边。点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi, 每条边的长度均为 1。图上两点(u, v)的距离定义为 u 点到 v 点的最短距离。对于图 G 上的点对(u, v),若它们的距离为 2,则它们之间会产生Wu×Wv的联合权值。
请问图 G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?
Input
第一行包含 1 个整数 n。
接下来 n-1 行,每行包含 2 个用空格隔开的正整数 u、v,表示编号为 u 和编号为 v 的点 之间有边相连。
最后 1 行,包含 n 个正整数,每两个正整数之间用一个空格隔开,其中第 i 个整数表示 图 G 上编号为 i 的点的权值为Wi。
Output
输出共 1 行,包含 2 个整数,之间用一个空格隔开,依次为图 G 上联合权值的最大值 和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007取余。
Sample Input
5
1 2
2 3
3 4
4 5
1 5 2 3 10
Sample Output
20 74
Http
Luogu:https://www.luogu.org/problem/show?pid=1351
Source
贪心,计数原理
题目大意
给出一棵树,求任意距离为2的两点的点权之积的最大值和总和
解决思路
因为任意两个距离为2的点一定有一个中间点相连,所以我们可以考虑枚举中间那个点,然后将与这个点距离为1的点分别相乘,同时维护这些点中的最大值和次大值,方便求出最大积
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
const int maxN=200100;
const int Mod=10007;
const int inf=2147483647;
int n;
vector<int> E[maxN];
int W[maxN];
int main()
{
scanf("%d",&n);
for (int i=1;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
E[u].push_back(v);
E[v].push_back(u);
}
for (int i=1;i<=n;i++)
scanf("%d",&W[i]);
ll Ans=0;
ll maxW=0;//最大积
for (int i=1;i<=n;i++)
{
ll nowsum=0;//当前和
ll max1=0,max2=0;//最大值和次大值
for (int j=0;j<E[i].size();j++)
{
int v=E[i][j];
Ans=(Ans+nowsum*W[v]%Mod)%Mod;//运用计数原理计数
nowsum=(nowsum+W[v])%Mod;
if (W[v]>=max1)
{
max2=max1;
max1=W[v];
}
else
if (W[v]>max2)
max2=W[v];
}
maxW=max(maxW,max1*max2);//取最大积
}
cout<<maxW<<" "<<Ans*2%Mod<<endl;
return 0;
}
Luogu 1351 NOIP 2014 联合权值(贪心,计数原理)的更多相关文章
- [NOIp 2014]联合权值
Description 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v ...
- NOIp 2014 联合权值 By cellur925
题目传送门 这题自己(真正)思考了很久(欣慰). (轻而易举)地发现这是一棵树后,打算从Dfs序中下功夫,推敲了很久规律,没看出来(太弱了). 开始手动枚举距离为2的情况,模模糊糊有了一些概念,但没有 ...
- NOIP 提高组 2014 联合权值(图论???)
传送门 https://www.cnblogs.com/violet-acmer/p/9937201.html 题解: 相关变量解释: int n; int fa[maxn];//fa[i] : i的 ...
- 题解【luoguP1351 NOIp提高组2014 联合权值】
题目链接 题意:给定一个无根树,每个点有一个权值.若两个点 \(i,j\) 之间距离为\(2\),则有联合权值 \(w_i \times w_j\).求所有的联合权值的和与最大值 分析: 暴力求,每个 ...
- NOIP 2004 联合权值
洛谷 P1351 联合权值 洛谷传送门 JDOJ 2886: [NOIP2014]联合权值 D1 T2 JDOJ传送门 Description 无向连通图 G有 n个点,n-1条边.点从 1到 n依次 ...
- [Luogu 1351] NOIP2014 联合权值
[Luogu 1351] NOIP2014 联合权值 存图,对于每一个点 \(u\),遍历它的所有邻接点.以 \(u\) 为中转点的点对中,\((x,y)\) 的联合权值 \(w_x \cdot w_ ...
- NOIp 2014 #2 联合权值 Label:图论 !!!未AC
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...
- NOIP 2014 T2 联合权值 DFS
背景 NOIP2014提高组第二题 描述 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi ,每条边的长度均为1.图上两点(u, v)的距离定义为u点到v点的最短距离.对 ...
- luogu 1351 联合权值
联合权值 题目大意 给你一个图,有\(n-1\)条边,距离均为\(1\),每距离为\(2\)的两个点的联合权值为\(W_u \times W_v\),求联合权值的最大值和联合权值总和. solutio ...
随机推荐
- 历时25天,我的博客(www.ityouknow.com)终于又活了过来
时间回到2016年的7月10号,那时候我刚刚开始正式在博客园写博客,博客园的交流氛围很好,但鉴于博客园古老的界面,同时计划创建一个自己独立的博客,毕竟自己的博客怎么折腾都行. 那时候正在研究 Spri ...
- 【下一代核心技术DevOps】:(七)持续集成Jenkins的应用(Aliyun Pipiline持续构建)
1. 前言 使用Jenkins比较好的就是可以在整个构建顺序中增加自定义的动作,比如构建成功给Leader发个邮件,给团队核心发个微信什么的. 当然最基本的核心还是它可以构建多种开发语言的项目,此类构 ...
- 修改sga_max_size大小后重启数据库报 ORA-00851
http://blog.itpub.net/30150152/viewspace-1449898/
- jdbcTemplete(转)
文章来源:http://blog.csdn.net/dyllove98/article/details/7772463 JdbcTemplate主要提供以下五类方法: execute方法:可以用于执行 ...
- vue容易混淆的点小记
computed.methods及watch函数的差异 computed:基于依赖进行缓存,若依赖不变,则直接调用缓存(适用于性能开销比较大的时候) methods: 不管数据是否变更,都会进行计算( ...
- python中的文件读写(open()函数、with open('file_directory','r') as f:、read()函数等)
python中也有文件读写,通过调用内置的读写函数.可以完成文件的打开/关闭.读.写入.追加等功能. open()函数 open()函数为python中的打开文件函数,使用方式为: f = open( ...
- Maven-Build Lifecycle(构建生命周期)
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html https://www.w3cschoo ...
- Linux基础学习(6)--Linux软件安装
第六章——Linux软件安装 一.软件包管理简介 1.软件包分类: (1)源码包:脚本安装包 (2)二进制包(RPM包.系统默认包) 2.源码包: (1)源码包的优点:开源,如果有足够的能力,可以修改 ...
- 跪求delphi 中的bitbutton 中的bmp图标
C:\Program Files (x86)\Embarcadero\RAD Studio\11.0\Images\GlyFX
- linux 源的配置更新
Ubuntu 首先编辑sources.list这个文件 vi /etc/apt/sources.list 把sources.list文件内容替换成如下 deb http://mirrors.aliyu ...