Luogu 1351 NOIP 2014 联合权值(贪心,计数原理)
Luogu 1351 NOIP 2014 联合权值(贪心,计数原理)
Description
无向连通图 G 有 n 个点,n-1 条边。点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi, 每条边的长度均为 1。图上两点(u, v)的距离定义为 u 点到 v 点的最短距离。对于图 G 上的点对(u, v),若它们的距离为 2,则它们之间会产生Wu×Wv的联合权值。
请问图 G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?
Input
第一行包含 1 个整数 n。
接下来 n-1 行,每行包含 2 个用空格隔开的正整数 u、v,表示编号为 u 和编号为 v 的点 之间有边相连。
最后 1 行,包含 n 个正整数,每两个正整数之间用一个空格隔开,其中第 i 个整数表示 图 G 上编号为 i 的点的权值为Wi。
Output
输出共 1 行,包含 2 个整数,之间用一个空格隔开,依次为图 G 上联合权值的最大值 和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007取余。
Sample Input
5
1 2
2 3
3 4
4 5
1 5 2 3 10
Sample Output
20 74
Http
Luogu:https://www.luogu.org/problem/show?pid=1351
Source
贪心,计数原理
题目大意
给出一棵树,求任意距离为2的两点的点权之积的最大值和总和
解决思路
因为任意两个距离为2的点一定有一个中间点相连,所以我们可以考虑枚举中间那个点,然后将与这个点距离为1的点分别相乘,同时维护这些点中的最大值和次大值,方便求出最大积
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
const int maxN=200100;
const int Mod=10007;
const int inf=2147483647;
int n;
vector<int> E[maxN];
int W[maxN];
int main()
{
scanf("%d",&n);
for (int i=1;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
E[u].push_back(v);
E[v].push_back(u);
}
for (int i=1;i<=n;i++)
scanf("%d",&W[i]);
ll Ans=0;
ll maxW=0;//最大积
for (int i=1;i<=n;i++)
{
ll nowsum=0;//当前和
ll max1=0,max2=0;//最大值和次大值
for (int j=0;j<E[i].size();j++)
{
int v=E[i][j];
Ans=(Ans+nowsum*W[v]%Mod)%Mod;//运用计数原理计数
nowsum=(nowsum+W[v])%Mod;
if (W[v]>=max1)
{
max2=max1;
max1=W[v];
}
else
if (W[v]>max2)
max2=W[v];
}
maxW=max(maxW,max1*max2);//取最大积
}
cout<<maxW<<" "<<Ans*2%Mod<<endl;
return 0;
}
Luogu 1351 NOIP 2014 联合权值(贪心,计数原理)的更多相关文章
- [NOIp 2014]联合权值
Description 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v ...
- NOIp 2014 联合权值 By cellur925
题目传送门 这题自己(真正)思考了很久(欣慰). (轻而易举)地发现这是一棵树后,打算从Dfs序中下功夫,推敲了很久规律,没看出来(太弱了). 开始手动枚举距离为2的情况,模模糊糊有了一些概念,但没有 ...
- NOIP 提高组 2014 联合权值(图论???)
传送门 https://www.cnblogs.com/violet-acmer/p/9937201.html 题解: 相关变量解释: int n; int fa[maxn];//fa[i] : i的 ...
- 题解【luoguP1351 NOIp提高组2014 联合权值】
题目链接 题意:给定一个无根树,每个点有一个权值.若两个点 \(i,j\) 之间距离为\(2\),则有联合权值 \(w_i \times w_j\).求所有的联合权值的和与最大值 分析: 暴力求,每个 ...
- NOIP 2004 联合权值
洛谷 P1351 联合权值 洛谷传送门 JDOJ 2886: [NOIP2014]联合权值 D1 T2 JDOJ传送门 Description 无向连通图 G有 n个点,n-1条边.点从 1到 n依次 ...
- [Luogu 1351] NOIP2014 联合权值
[Luogu 1351] NOIP2014 联合权值 存图,对于每一个点 \(u\),遍历它的所有邻接点.以 \(u\) 为中转点的点对中,\((x,y)\) 的联合权值 \(w_x \cdot w_ ...
- NOIp 2014 #2 联合权值 Label:图论 !!!未AC
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...
- NOIP 2014 T2 联合权值 DFS
背景 NOIP2014提高组第二题 描述 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi ,每条边的长度均为1.图上两点(u, v)的距离定义为u点到v点的最短距离.对 ...
- luogu 1351 联合权值
联合权值 题目大意 给你一个图,有\(n-1\)条边,距离均为\(1\),每距离为\(2\)的两个点的联合权值为\(W_u \times W_v\),求联合权值的最大值和联合权值总和. solutio ...
随机推荐
- Zabbix监控系统部署:源码安装
1. 概述1.1 基础环境2. 部署过程2.1 创建用户组2.2 下载源码解压编译安装2.2.1 下载源码解压2.2.2 YUM安装依赖环境2.2.3 编译安装最新版curl2.2.4 更新GNU构建 ...
- TDD、BDD、ATDD、DDD 软件开发模式
TDD.BDD.ATDD.DDD 软件开发模式 四个开发模式意思: TDD:测试驱动开发(Test-Driven Development) BDD:行为驱动开发(Behavior Driven Dev ...
- ULMFiT 阅读笔记
ULMFiT 阅读笔记 概述 这篇文章从文本分类模型入手,主要提出了两点:一是预训练语言模型在大中小规模的数据集中都能提升分类效果,在小规模数据集中效果尤为显著.二是提出了多种预训练的调参方法,包括D ...
- 个人阅读作业WEEK7 (软件工程的瀑布, 大泥球, 教堂,集市,和银弹)
一 . 关于银弹 (Silver Bullet) 银弹,被引申为解决问题的有效办法.IBM大型机之父福瑞德·布鲁克斯在1986年的论文<没有银弹>中表达了他的观点:软件工程中不存在银弹—— ...
- 期末总结:LINUX内核分析与设计期末总结
朱国庆原创作品转载请注明出处<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一,心得体会 关于网上听课这 ...
- Linux内核分析第七周总结
第七章 可执行程序的装载 可执行程序的生成 可执行程序的生成: c语言代码--->经过编译器的预处理--->编译成汇编代码--->由汇编器编译成目标代码--->链接成可执行文件 ...
- 冲刺Two之站立会议9
今天我们团队主要针对软件的功能进行了改进.因为它目前可以实现视频通话,语音聊天,文件传输和文字聊天的通信功能,我们想要在它的基础上实现临时局域群聊和群聊视频的功能,目前还没有完全实现.
- 第二个spring,第五天
陈志棚:成绩的统筹 李天麟:界面音乐 徐侃:代码算法 完成进度百分之70...会继续努力的!
- 四则运算APP
1) N (Need 需求) 用户基本需求:随机生成四则运算,能自动判定对错,答错时能提示正确答案! 在这个基础上,我的创意: 多用户模式,能记录用户的答题情况(登陆功能) 分级挑战,按照不同的水 ...
- MES架构
FlexWeaver作为速威公司全新一代MES的技术平台,提供MES所需的全系列平台服务,针对工业大数据提供分布式计算环境.统一数据库引擎.大数据及云计算支撑等等. ● 同时适应企业内网服务器及云部署 ...