题目大意:维护 N*M 个点,每个点有三个权值,支持单点修改,查询矩形区间内权值等于某个值的点的个数。

题解:矩阵可以看成两个维度,权值为第三个维度,为一个三维偏序维护问题。发现第三维仅仅为单点修改和单点询问,直接用数组实现最简单,且空间足够。因此,直接建立 100 个二维树状数组,转变成为单点修改,矩形查询的问题。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=301; int n,m,q;
int t[101][maxn][maxn],d[maxn][maxn];
inline int lowbit(int x){return x&-x;}
inline void modify(int o,int x,int y,int val){
for(int i=x;i<=n;i+=lowbit(i))
for(int j=y;j<=m;j+=lowbit(j))
t[o][i][j]+=val;
}
inline int query(int o,int x,int y){
int res=0;
for(int i=x;i;i-=lowbit(i))
for(int j=y;j;j-=lowbit(j))
res+=t[o][i][j];
return res;
} void read_and_parse(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&d[i][j]);
modify(d[i][j],i,j,1);
}
} void solve(){
scanf("%d",&q);
while(q--){
int opt;
scanf("%d",&opt);
if(opt==1){
int x,y,c;scanf("%d%d%d",&x,&y,&c);
modify(d[x][y],x,y,-1),modify(d[x][y]=c,x,y,1);
}else{
int x1,y1,x2,y2,c;scanf("%d%d%d%d%d",&x1,&x2,&y1,&y2,&c);
printf("%d\n",query(c,x2,y2)-query(c,x1-1,y2)-query(c,x2,y1-1)+query(c,x1-1,y1-1));
}
}
} int main(){
read_and_parse();
solve();
return 0;
}

【洛谷P4054】计数问题的更多相关文章

  1. 模板:二维树状数组 【洛谷P4054】 [JSOI2009]计数问题

    P4054 [JSOI2009]计数问题 题目描述 一个n*m的方格,初始时每个格子有一个整数权值.接下来每次有2种操作: 改变一个格子的权值: 求一个子矩阵中某种特定权值出现的个数. 输入输出格式 ...

  2. 洛谷P4054 [JSOI2009]计数问题(二维树状数组)

    题意 题目链接 Sol 很傻x的题.. c才100, n, m才300,直接开100个二维树状数组就做完了.. #include<bits/stdc++.h> using namespac ...

  3. 洛谷p1980 计数问题

    题目描述 试计算在区间 111 到 nn n的所有整数中,数字x(0≤x≤9) x(0 ≤ x ≤ 9)x(0≤x≤9)共出现了多少次?例如,在 111到11 11 11中,即在 1,2,3,4,5, ...

  4. Java实现 洛谷 P1980 计数问题

    import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = ...

  5. 洛谷——P1980 [NOIP2013 普及组] 计数问题

    题目描述 试计算在区间 11 到 nn的所有整数中,数字x(0 ≤ x ≤ 9)x(0≤x≤9)共出现了多少次?例如,在 11到1111中,即在 1,2,3,4,5,6,7,8,9,10,111,2, ...

  6. 2019.06.17课件:[洛谷P1310]表达式的值 题解

    P1310 表达式的值 题目描述 给你一个带括号的布尔表达式,其中+表示或操作|,*表示与操作&,先算*再算+.但是待操作的数字(布尔值)不输入. 求能使最终整个式子的值为0的方案数. 题外话 ...

  7. 洛谷 P6295 - 有标号 DAG 计数(生成函数+容斥+NTT)

    洛谷题面传送门 看到图计数的题就条件反射地认为是不可做题并点开了题解--实际上这题以我现在的水平还是有可能能独立解决的( 首先连通这个条件有点棘手,我们尝试把它去掉.考虑这题的套路,我们设 \(f_n ...

  8. 洛谷 P3714 - [BJOI2017]树的难题(点分治)

    洛谷题面传送门 咦?鸽子 tzc 竟然来补题解了?incredible( 首先看到这样类似于路径统计的问题我们可以非常自然地想到点分治.每次我们找出每个连通块的重心 \(x\) 然后以 \(x\) 为 ...

  9. 洛谷 P7620 - CF1431J Zero-XOR Array(状压 dp)

    洛谷题面传送门 首先显然题目等价于求有多少个长度 \(n-1\) 的序列 \(b\) 满足 \(a_i\le b_i\le a_{i+1}\),满足 \(b_1\oplus b_2\oplus\cdo ...

随机推荐

  1. M1/M2项目阶段总结

    1.M1/M2总结 我们这学期完成了学霸项目. 在M1阶段,我们首先进行了分工,完成了一个系统的计划,然后是对学长代码的移植和优化.在优化代码的过程中,我们遇到了不少问题,比如一些代码的冗余以及指向性 ...

  2. Week 2 代码规范

    Question 1: 这些规范都是官僚制度下产生的浪费大家的编程时间.影响人们开发效率, 浪费时间的东西. My opinion: 我认为恰恰相反,这个可以提高人们的开发效率. 在团队合作当中,如果 ...

  3. 团队作业M1反思

    经过这两个多月以来的软件工程的学习,还有团队项目的经历,总结反思如下: 首先,一个月的软件工程团队项目的进行让我对软件开发有了比较实际的认识,以前我们的编程多是个人编程,两人编程,程序难度低,代码量少 ...

  4. 《linux内核设计与分析》内核模块编程

    内核模块编程 一.准备工作 虚拟机:VMware Workstation 12操作系统:ubuntu当前内核版本:linux-headers-4.4.0-22-generic 二.有关于内核模块的知识 ...

  5. Beta版会议总结

    开会时间:2015年06月12日 开会地点:基教601 开会人员:李想,王颖瑞,朱少辉,陈晨,侯涛亮. 开会内容:对于6月10日,大一同学的投票情况进行讨论和反思. 讨论结果如下: 一.目前存在的问题 ...

  6. 安装tesserocr错误(未解决)

    在win10下使用pip install tesserocr安装时,始终报错,未解决问题 解压tesserocr-2.2.2.tar.gz该文件夹后,查看setup.py文件,发现似乎model只能再 ...

  7. Java 一维数组作为参数和返回值

    一维数组作为参数: 传数组的引用 创建数组直接传,本质也是传数组的引用 传null public class Test { //数组作为参数时,可以传递3中形式 public void m1(int[ ...

  8. PAT 1013 数素数

    https://pintia.cn/problem-sets/994805260223102976/problems/994805309963354112 令P~i~表示第i个素数.现任给两个正整数M ...

  9. Oracle 数据表误删恢复 Flashback

    1. 前提条件. recyclebin 参数打开. 验证参数是否打开: SHOW PARAMETER RECYCLEBIN 2. 如果参数没有打开的话 需要打开,并且重启一下数据库方法为 alter ...

  10. GS使用HTTPS登录的设置过程

    1. Windows 增加角色服务 服务器配置管理器, 添加角色服务 增加角色功能里面有: 证书颁发机构 证书颁发机构 web注册 2. AD CS配置 主要是next操作 独立ca 根证书 等 3. ...