sto \(lxl\) orz

考虑莫队,每次移动端点,我们都要询问区间内和当前数字异或有 \(k\) 个 \(1\) 的数字个数

询问 \([l,r]\) 可以再次离线,拆成询问 \([1,l-1]\) 和 \([l,r]\)

然后考虑莫队要移动 \([l,r]\) 的 \(l\) 到 \(p\)

假设 \(p>l\)

那么相当于每次询问 \(a[l]\) 和 \([l+1,r]\),然后 \(++l\) 直到 \(l=p\)

即每次询问 \(a[l]\) 和 \([1,l]\) ,\(a[l]\) 和 \([1,r]\)

对于前面的部分,它每次都是前缀区间的最后一个数字询问前缀区间,可以预处理

对于后面的部分,它每次都是一个数字询问一个固定的区间,直接在 \(r\) 处打上一个询问 \(l,p\) 的标记,之后离线暴力询问 \(l,p\),这一部分复杂度和莫队一样

然后其它移动端点的方法类似

大力讨论一下即可

# include <bits/stdc++.h>
using namespace std;
typedef long long ll; namespace IO {
const int maxn(1 << 21 | 1); char ibuf[maxn], *iS, *iT, c;
int f; inline char Getc() {
return iS == iT ? (iT = (iS = ibuf) + fread(ibuf, 1, maxn, stdin), (iS == iT ? EOF : *iS++)) : *iS++;
} template <class Int> inline void In(Int &x) {
for (f = 1, c = Getc(); c < '0' || c > '9'; c = Getc()) f = c == '-' ? -1 : 1;
for (x = 0; c >= '0' && c <= '9'; c = Getc()) x = x * 10 + (c ^ 48);
x *= f;
}
} using IO :: In; const int maxn(2e5 + 5); int cnt, v[maxn], n, m, k, a[maxn], sum[maxn], blo;
ll cur, ret[maxn], ans[maxn], pre1[maxn], pre2[maxn]; struct Qry {
int l, r, id; inline bool operator < (Qry b) const {
return l / blo != b.l / blo ? l < b.l : r < b.r;
}
} qry[maxn]; vector <Qry> q[maxn]; # define pk push_back int main() {
In(n), In(m), In(k), blo = sqrt(n);
for (int i = 0; i < 16384; ++i) {
int x = i, c = 0;
for (; x; x ^= x & -x) ++c;
if (c == k) v[++cnt] = i;
}
for (int i = 1; i <= n; ++i) In(a[i]);
for (int i = 1; i <= m; ++i) In(qry[i].l), In(qry[i].r), qry[i].id = i;
sort(qry + 1, qry + m + 1);
for (int i = 1, l = qry[1].r + 1, r = qry[1].r; i <= m; ++i) {
if (l < qry[i].l) q[r].pk((Qry){l, qry[i].l - 1, qry[i].id << 1});
else if (l > qry[i].l) q[r].pk((Qry){qry[i].l, l - 1, qry[i].id << 1});
l = qry[i].l;
if (r < qry[i].r) q[l - 1].pk((Qry){r + 1, qry[i].r, qry[i].id << 1 | 1});
else if (r > qry[i].r) q[l - 1].pk((Qry){qry[i].r + 1, r, qry[i].id << 1 | 1});
r = qry[i].r;
}
for (int i = 1; i <= n; ++i) {
pre1[i] = pre1[i - 1] + sum[a[i]];
for (int j = 1; j <= cnt; ++j) ++sum[a[i] ^ v[j]];
pre2[i] = pre2[i - 1] + sum[a[i]];
for (auto t : q[i]) for (int j = t.l; j <= t.r; ++j) ret[t.id] += sum[a[j]];
}
for (int i = 1, l = qry[1].r + 1, r = qry[1].r; i <= m; ++i) {
if (l < qry[i].l) cur += pre2[qry[i].l - 1] - pre2[l - 1] - ret[qry[i].id << 1];
else if (l > qry[i].l) cur += ret[qry[i].id << 1] - pre2[l - 1] + pre2[qry[i].l - 1];
l = qry[i].l;
if (r < qry[i].r) cur += pre1[qry[i].r] - pre1[r] - ret[qry[i].id << 1 | 1];
else if (r > qry[i].r) cur += ret[qry[i].id << 1 | 1] - pre1[r] + pre1[qry[i].r];
ans[qry[i].id] = cur, r = qry[i].r;
}
for (int i = 1; i <= m; ++i) printf("%lld\n", ans[i]);
return 0;
}

Luogu4887 第十四分块(前体)的更多相关文章

  1. P4887 第十四分块(前体) 莫队

    题意: 给你一个序列,每次询问l,r问多少个a[i]^a[j]有k个1,k固定. 序列长度1e5,a[i]<=2^14 时限1s,空间40M 题解: 个人其实开始没什么思路,看了题解也好久,题解 ...

  2. 洛谷P4887 第十四分块(前体)(二次离线莫队)

    题面 传送门 题解 lxl大毒瘤 我们考虑莫队,在移动端点的时候相当于我们需要快速计算一个区间内和当前数字异或和中\(1\)的个数为\(k\)的数有几个,而这个显然是可以差分的,也就是\([l,r]\ ...

  3. [洛谷P4887]第十四分块(前体)

    题目大意: 给定一个长度为\(n\)的序列\(a\),\(k\),和\(m\)次询问. 每次询问给定区间\([l,r]\),求满足\(l\leqslant i< j\leqslant r\)且\ ...

  4. 【LuoguP4887】第十四分块(前体)

    题目链接 题意 区间两数异或在二进制下有 \(k\) 个 \(1\) 的对数. Sol 普通莫队的话,如果要实时维护好区间内的答案需要支持区间对一个数求答案. 直接做不是很好做,容易发现其实这也就是一 ...

  5. 洛谷 P4887 -【模板】莫队二次离线(第十四分块(前体))(莫队二次离线)

    题面传送门 莫队二次离线 mol ban tea,大概是这道题让我第一次听说有这东西? 首先看到这类数数对的问题可以考虑莫队,记 \(S\) 为二进制下有 \(k\) 个 \(1\) 的数集,我们实时 ...

  6. 「kuangbin带你飞」专题十四 数论基础

    layout: post title: 「kuangbin带你飞」专题十四 数论基础 author: "luowentaoaa" catalog: true tags: mathj ...

  7. Alink漫谈(十四) :多层感知机 之 总体架构

    Alink漫谈(十四) :多层感知机 之 总体架构 目录 Alink漫谈(十四) :多层感知机 之 总体架构 0x00 摘要 0x01 背景概念 1.1 前馈神经网络 1.2 反向传播 1.3 代价函 ...

  8. 我的MYSQL学习心得(十四) 备份和恢复

    我的MYSQL学习心得(十四) 备份和恢复 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) ...

  9. 雅虎(yahoo)前端优化十四条军规

    第一条.尽可能的减少 HTTP 的请求数 (Make Fewer HTTP Requests ) http请求是要开销的,想办法减少请求数自然可以提高网页速度.常用的方法,合并css,js(将一个页面 ...

随机推荐

  1. instanceof,isinstance,isAssignableFrom,asSubclass的区别

    1,isAssignableFrom():是字节码对象的方法 是用来判断一个类的字节码对象和另一个类的字节码对象是否相同或是子类或接口. assignable英 [ə,sainəbl]美 [ə,sai ...

  2. Optional类

    参照: 一篇简单使用介绍 官网详细用法介绍 包含各种例子的cheetsheet 一个封装某个value的容器 一般可用于方法返回值类型,提醒调用方,这个值可能为null,所以需要处理(因为空指针异常是 ...

  3. (Lua) C++ 呼叫 Lua 的變數、函式

    簡單的在C++裡頭與Lua交互操作 首先提供 Lua 的簡單範例 print(" Lua 2019/01/07 !!!") -- Variable monster_type = & ...

  4. jQuery 节点操作(创建 插入 删除 复制 替换 包裹)

    一,创建元素节点: 第1个步骤可以使用jQuery的工厂函数$()来完成,格式如下: $(html); $(html)方法会根据传入的HTML标记字符串,创建一个DOM对象,并将这个DOM对象包装成一 ...

  5. hibernate调用mysql自己手动创建函数报错

    split为自己手动在mysql中创建的函数,在hibernate调用时出错,解决方案如下: jdbc调用可以.不用改hibernate的方言. 正常的为:

  6. Github如何在本地创建一个空的仓库

    1.在任意地方创建文件夹,并进入该文件夹: 2.通过git init命令把该文件夹变成Git可管理的仓库: 3.该文件夹里会多了个.git文件夹,它是Git用来跟踪和管理版本库的: 4.这时候手动把项 ...

  7. abp 依赖注入声明

    public class SchedulerManager : ISingletonDependency { private ILogger logger; public SchedulerManag ...

  8. System Verilog基础(二)

    这一篇笔记主要记录Procedural,Process,Task and function,Interface和Communication中值得注意的点. 1.Procedural 写testbenc ...

  9. 我把双系统的win10抹除了现在开机只按option还是会出现双系统选择,怎么把那个win10给取消了或删除掉

    找到解决方法了,按步骤来吧,准备:[打开Finder如果你在侧边设备一栏里看不到 Macintosh HD 就打开Finder设置>边栏>勾选硬盘,如果能看到请无视这一行]1. 打开终端执 ...

  10. 何为Web App,何为Hybird App

    这些概念听起来很火,当下也很流行,真正理解起来却并非易事.如果让我来全面的解释Web App和Hybird App,我觉得还有些困难. 这篇文章只是我深入了解移动领域开发过程中的不断整理和总结,其中涉 ...