靠瞎猜的数学题

首先我们先对这些向量进行一顿组合,会发现\((a,b)(a,-b)\)可以组合成\((2a,0)\),\((b,-a)(b,a)\)可以组合成\((2b,0)\),同理\((0,2a)\)和\((0,2b)\)自然也是可以组合成的

这个\(0\)很有用,可以只对一项考虑

所以如果这个时候有\(2ax+2by=X\),\(2ax+2by=Y\),就可以满足了

根据贝祖定理如果\((2a,2b)|X\)且\((2a,2b)|Y\)那么这个时候就满足了

之后还有一些情况

  1. 加上一个\((a,b)\),变成\(2ax+2by=X+a\)和\(2ax+2by=Y+b\)

  2. 加上一个\((b,a)\),变成\(2ax+2by=X+b\)和\(2ax+2by=Y+a\)

  3. \((a,b)\)和\((b,a)\)都加上,变成\(2ax+2by=X+a+b\)和\(2ax+2by=Y+a+b\)

还是分别套用贝祖定理就可以解决了

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#define max(a,b) ((a)>(b)?(a):(b))
#define LL long long
#define re register
LL gcd(LL a,LL b)
{
if(!b) return a;
return gcd(b,a%b);
}
inline LL read()
{
char c=getchar();
LL x=0,r=1;
while(c<'0'||c>'9')
{
if(c=='-') r=-1;
c=getchar();
}
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int T;
LL a,b,x,y,now;
int main()
{
T=read();
while(T--)
{
a=read(),b=read(),x=read(),y=read();
if(!a&&!b)
{
if(!x&&!y) puts("Y");
else puts("N");
continue;
}
if(!a||!b)
{
if(x%max(a,b)==0&&y%max(a,b)==0) puts("Y");
else puts("N");
continue;
}
now=gcd(2*a,2*b);
if(x%now==0&&y%now==0) puts("Y");
else if((x+a)%now==0&&(y+b)%now==0) puts("Y");
else if((x+b)%now==0&&(y+a)%now==0) puts("Y");
else if((x+a+b)%now==0&&(y+a+b)%now==0) puts("Y");
else puts("N");
}
return 0;
}

【[HAOI2011]向量】的更多相关文章

  1. 【BZOJ2299】[HAOI2011]向量(数论)

    [BZOJ2299][HAOI2011]向量(数论) 题面 BZOJ 洛谷 题解 首先如果我们的向量的系数假装可以是负数,那么不难发现真正有用的向量只有\(4\)个,我们把它列出来.\((a,b)(a ...

  2. 【BZOJ 2299】 2299: [HAOI2011]向量 (乱搞)

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1255  Solved: 575 Description 给你一 ...

  3. P2520 [HAOI2011]向量

    题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...

  4. [HAOI2011]向量

    题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...

  5. BZOJ2299 [HAOI2011]向量 【裴蜀定理】

    题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...

  6. 牛客19985 HAOI2011向量(裴属定理,gcd)

    https://ac.nowcoder.com/acm/problem/19985 看到标签“裴属定理”就来做下,很眼熟,好像小学奥数学过.. 题意:给你a,b,x,y,你可以任意使用(a,b), ( ...

  7. [HAOI2011] 向量 - 裴蜀定理

    给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y) ...

  8. BZOJ2299: [HAOI2011]向量

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2299 题解:乱搞就可以了... 不妨认为有用的只有(a,b)(a,-b)(b,a)(b,-a) ...

  9. luogu P2520 [HAOI2011]向量

    传送门 一堆人说数论只会gcd,我连gcd都不会,菜死算了qwq Orzyyb 这题欺负我数学不好qwq 首先可以发现实际上有如下操作:x或y±2a,x或y±2b,x+a y+b,x+b y+a(后面 ...

随机推荐

  1. echarts 添加标线,设置颜色

    <script src="assets/js/jquery-1.8.3.min.js"></script> <!--echart图表引入js--> ...

  2. mybatis 排坑记录

    1. mapper xml resultMap 中定义 property 时不能出现空格 否则会出现反射错误,找不到 do 对应的 set 方法

  3. 将Windows上的Oracle迁移至Linux

    迁移前提: 1.在安装Linux数据库实例时,注意选择的编码格式要与Windows的数据库实例一致. 迁移步骤 1.检查Linux上数据库实例的编译格式 SQL> select userenv( ...

  4. IEEE VIS 2018专题

    PoPo数据可视化 聚焦于Web数据可视化与可视化交互领域,发现可视化领域有意思的内容.不想错过可视化领域的精彩内容, 就快快关注我们吧 :) 本文带有视频,浏览视频请关注公众号浏览. IEEE VI ...

  5. THUSC2018退役预定

    Day-inf \(HNOI,CTSC,APIO\)都爆炸了之后 好不容易找回自信心,怀着一定报不上的心情报了清华 居然报上了怕不是报了的都通过了 毕竟\(wc\)的时候被清华虐惨了 还是很虚的 Da ...

  6. js中作用域链和作用域

    作用域 在JavaScript中,我们可以将作用域定义为一套规则,这套规则用来管理引擎如何在当前作用域以及嵌套的子作用域中根据标识符名称(变量名或者函数名)进行变量查找. 经过研究<高级程序设计 ...

  7. gulp快速将css中的px替换成rem

    1.Gulp安装配置 1.全局安装gulp 1.1 安装 命令提示符执行cnpm install gulp -g; 1.2 查看是否正确安装:命令提示符执行gulp -v,出现版本号即为正确安装. 2 ...

  8. 利用Ogr将Kml转为Shape【1】

    最近在研究Kml怎么转化为Shape文件,因为客户中很多在原来采集了一部分数据都是在google Earth中,而我们的应用中特别需要这份数据,所以打算先在GE中把这份数据导出为Kml或Kmz文件,然 ...

  9. number to string

    C++进行int to string和string to int 下面方法一存在内存泄露 #include<strstream>void main(){ std::strstream ss ...

  10. php中http_build_query函数

    http_build_query ( array $formdata [, string $numeric_prefix ] ) 使用给出的关联(或下标)数组生成一个经过 URL-encode 的请求 ...