Apache Hadoop YARN – NodeManager--转载
原文地址:http://zh.hortonworks.com/blog/apache-hadoop-yarn-nodemanager/
The NodeManager (NM) is YARN’s per-node agent, and takes care of the individual compute nodes in a Hadoop cluster. This includes keeping up-to date with the ResourceManager (RM), overseeing containers’ life-cycle management; monitoring resource usage (memory, CPU) of individual containers, tracking node-health, log’s management and auxiliary services which may be exploited by different YARN applications.
NodeManager Components

- NodeStatusUpdater
On startup, this component registers with the RM and sends information about the resources available on the nodes. Subsequent NM-RM communication is to provide updates on container statuses – new containers running on the node, completed containers, etc.
In addition the RM may signal the NodeStatusUpdater to potentially kill already running containers.
- ContainerManager
This is the core of the NodeManager. It is composed of the following sub-components, each of which performs a subset of the functionality that is needed to manage containers running on the node.
- RPC server: ContainerManager accepts requests from Application Masters (AMs) to start new containers, or to stop running ones. It works with ContainerTokenSecretManager (described below) to authorize all requests. All the operations performed on containers running on this node are written to an audit-log which can be post-processed by security tools.
- ResourceLocalizationService: Responsible for securely downloading and organizing various file resources needed by containers. It tries its best to distribute the files across all the available disks. It also enforces access control restrictions of the downloaded files and puts appropriate usage limits on them.
- ContainersLauncher: Maintains a pool of threads to prepare and launch containers as quickly as possible. Also cleans up the containers’ processes when such a request is sent by the RM or the ApplicationMasters (AMs).
- AuxServices: The NM provides a framework for extending its functionality by configuring auxiliary services. This allows per-node custom services that specific frameworks may require, and still sandbox them from the rest of the NM. These services have to be configured before NM starts. Auxiliary services are notified when an application’s first container starts on the node, and when the application is considered to be complete.
- ContainersMonitor: After a container is launched, this component starts observing its resource utilization while the container is running. To enforce isolation and fair sharing of resources like memory, each container is allocated some amount of such a resource by the RM. The ContainersMonitor monitors each container’s usage continuously and if a container exceeds its allocation, it signals the container to be killed. This is done to prevent any runaway container from adversely affecting other well-behaved containers running on the same node.
- LogHandler: A pluggable component with the option of either keeping the containers’ logs on the local disks or zipping them together and uploading them onto a file-system.
- ContainerExecutor
Interacts with the underlying operating system to securely place files and directories needed by containers and subsequently to launch and clean up processes corresponding to containers in a secure manner.
- NodeHealthCheckerService
Provides functionality of checking the health of the node by running a configured script frequently. It also monitors the health of the disks specifically by creating temporary files on the disks every so often. Any changes in the health of the system are notified to NodeStatusUpdater (described above) which in turn passes on the information to the RM.
- Security
- ApplicationACLsManagerNM needs to gate the user facing APIs like container-logs’ display on the web-UI to be accessible only to authorized users. This component maintains the ACLs lists per application and enforces them whenever such a request is received.
- ContainerTokenSecretManager: verifies various incoming requests to ensure that all the incoming operations are indeed properly authorized by the RM.
- WebServer
Exposes the list of applications, containers running on the node at a given point of time, node-health related information and the logs produced by the containers.
Spotlight on Key Functionality
- Container Launch
To facilitate container launch, the NM expects to receive detailed information about a container’s runtime as part of the container-specifications. This includes the container’s command line, environment variables, a list of (file) resources required by the container and any security tokens.
On receiving a container-launch request – the NM first verifies this request, if security is enabled, to authorize the user, correct resources assignment, etc. The NM then performs the following set of steps to launch the container.
- A local copy of all the specified resources is created (Distributed Cache).
- Isolated work directories are created for the container, and the local resources are made available in these directories.
- The launch environment and command line is used to start the actual container.
- Log Aggregation
Handling user-logs has been one of the big pain-points for Hadoop installations in the past. Instead of truncating user-logs, and leaving them on individual nodes like the TaskTracker, the NM addresses the logs’ management issue by providing the option to move these logs securely onto a file-system (FS), for e.g. HDFS, after the application completes.
Logs for all the containers belonging to a single Application and that ran on this NM are aggregated and written out to a single (possibly compressed) log file at a configured location in the FS. Users have access to these logs via YARN command line tools, the web-UI or directly from the FS.
- How MapReduce shuffle takes advantage of NM’s Auxiliary-services
The Shuffle functionality required to run a MapReduce (MR) application is implemented as an Auxiliary Service. This service starts up a Netty Web Server, and knows how to handle MR specific shuffle requests from Reduce tasks. The MR AM specifies the service id for the shuffle service, along with security tokens that may be required. The NM provides the AM with the port on which the shuffle service is running which is passed onto the Reduce tasks.
Conclusion
In YARN, the NodeManager is primarily limited to managing abstract containers i.e. only processes corresponding to a container and not concerning itself with per-application state management like MapReduce tasks. It also does away with the notion of named slots like map and reduce slots. Because of this clear separation of responsibilities coupled with the modular architecture described above, NM can scale much more easily and its code is much more maintainable.
Apache Hadoop YARN – NodeManager--转载的更多相关文章
- Apache Hadoop YARN: 背景及概述
从2012年8月开始Apache Hadoop YARN(YARN = Yet Another Resource Negotiator)成了Apache Hadoop的一项子工程.自此Apache H ...
- hadoop错误org.apache.hadoop.yarn.exceptions.YarnException Unauthorized request to start container
错误: 14/04/29 02:45:07 INFO mapreduce.Job: Job job_1398704073313_0021 failed with state FAILED due to ...
- spark on yarn 动态资源分配报错的解决:org.apache.hadoop.yarn.exceptions.InvalidAuxServiceException: The auxService:spark_shuffle does not exist
组件:cdh5.14.0 spark是自己编译的spark2.1.0-cdh5.14.0 第一步:确认spark-defaults.conf中添加了如下配置: spark.shuffle.servic ...
- org.apache.hadoop.yarn.exceptions.InvalidAuxServiceException: The auxService: mapreduce_shuffle do
在yarn-site.xml 配置文件中增加: <property> <name>yarn.nodemanager.aux-services</name> < ...
- Hadoop - YARN NodeManager 剖析
一 概述 NodeManager是执行在单个节点上的代理,它管理Hadoop集群中单个计算节点,功能包含与ResourceManager保持通信,管理Container的生命周期.监控 ...
- spark 笔记 4:Apache Hadoop YARN: Yet Another Resource Negotiator
spark支持YARN做资源调度器,所以YARN的原理还是应该知道的:http://www.socc2013.org/home/program/a5-vavilapalli.pdf 但总体来说, ...
- Apache Hadoop YARN – ResourceManager--转载
原文地址:http://zh.hortonworks.com/blog/apache-hadoop-yarn-resourcemanager/ ResourceManager (RM) is the ...
- Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/yarn/exceptions/YarnException
这个是Flink 1.11.1 使用yarn-session 出现的错误:原因是在Flink1.11 之后不再提供flink-shaded-hadoop-*” jars 需要在yarn-sessio ...
- Caused by:java.lang.ClassNotFoundException:org.apache.hadoop.yarn.util.Apps
错误原因 缺少hadoop-yarn.jar包. 导入jar包就好了~-~
随机推荐
- 【LOJ10121】与众不同
[LOJ10121]与众不同 题面 LOJ 题解 这题是_\(tham\)给\(ztl\)他们做的,然而这道题™居然还想了蛮久... 首先可以尺取出一个位置\(i\)上一个合法的最远位置\(pre_i ...
- 前端 layui
如果想实现类似 alert这种效果又不想阻塞html运行的话,就是用layer吧! http://www.layui.com/
- Entity Framework中的几种加载方式
在Entity Framework中有三种加载的方式,分别是延迟加载,自动加载和显示加载.下面用一个例子来说明:现在有两个表,一个是资料表(Reference),另外一个表是资料分类表 ...
- JMeter:全面的乱码解决方案【转】
本文是转自https://www.cnblogs.com/mawenqiangios/p/7918583.html 感谢分享者 中文乱码一直都是比较让人棘手的问题,我们在使用Jmeter的过程中, ...
- mysql 数据库优化之执行计划(explain)简析
数据库优化是一个比较宽泛的概念,涵盖范围较广.大的层面涉及分布式主从.分库.分表等:小的层面包括连接池使用.复杂查询与简单查询的选择及是否在应用中做数据整合等:具体到sql语句执行效率则需调整相应查询 ...
- 高可用Kubernetes集群-9. 部署kubelet
十一.部署kubelet 接下来两个章节是部署Kube-Node相关的服务,包含:kubelet,kube-proxy. 1. TLS bootstrap用户授权 # kubelet采用TLS Boo ...
- zabbix_agentd-install.sh (脚本部署zabbix_agentd服务)
原文发表于cu:2016-05-20 基于http://www.cnblogs.com/netonline/p/7406598.html(http://blog.chinaunix.net/uid-2 ...
- MySQL Proxy和 Amoeba 工作机制浅析
MySQL Proxy处于客户端应用程序和MySQL服务器之间,通过截断.改变并转发客户端和后端数据库之间的通信来实现其功能,这和WinGate 之类的网络代理服务器的基本思想是一样的.代理服务器是和 ...
- 大数据-spark-hbase-hive等学习视频资料
不错的大数据spark学习资料,连接过期在评论区评论,再给你分享 https://pan.baidu.com/s/1ts6RNuFpsnc39tL3jetTkg
- PHP中的数据类型
PHP中包含8种数据类型,其中包括4种标量:整型,浮点型,字符串,布尔值:2种复合类型:数组和对象:一种resource类型,剩下的一种是NULL类型. 整型 PHP中的整型可以是负,也可以是正,而整 ...