【CF995F】Cowmpany Cowmpensation
【CF995F】Cowmpany Cowmpensation
题面
树形结构,\(n\)个点,给每个节点分配工资\([1,d]\),子节点不能超过父亲节点的工资,问有多少种分配方案
其中\(n\leq3000,d\leq10^9\)
题解
先上一个\(O(nd)\)的\(dp\):
设\(f[u][j]\)表示点\(u\)分配的工资为\(j\)的方案数
那么转移时:
先转移\(f[u][j]=\prod_{v\in son_u}f[v][j]\)
再转移\(f[u][j]=f[u][j]+f[u][j-1]\)
然后我们根据转移,假装最后结果\(f[1][x]=y\)是一个\(n\)次多项式上的一些点
然后我们把\(D\)插值,发现,诶。。。居然对了。。。好敷衍
那么我们只做一个\(O(n^2)\)的\(dp\),将\(dp[1][0]...dp[1][n]\)看作点就可以了
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAX_N = 3e3 + 5, Mod = 1e9 + 7;
int fpow(int x, int y) {
int res = 1;
while (y) {
if (y & 1) res = 1ll * res * x % Mod;
x = 1ll * x * x % Mod;
y >>= 1;
}
return res;
}
int Lagrange(int n, int *x, int *y, int xi) {
int res = 0;
for (int i = 1; i <= n; i++) {
int s1 = 1, s2 = 1;
for (int j = 0; j <= n; j++)
if (i != j) {
s1 = 1ll * (xi - x[j]) % Mod * s1 % Mod;
s2 = 1ll * (x[i] - x[j]) % Mod * s2 % Mod;
}
res = (res + 1ll * y[i] * s1 % Mod * fpow(s2, Mod - 2) % Mod) % Mod;
res = (res + Mod) % Mod;
}
return res;
}
struct Graph { int to, next; } e[MAX_N << 1]; int fir[MAX_N], e_cnt;
void clearGraph() { memset(fir, -1, sizeof(fir)); e_cnt = 0; }
void Add_Edge(int u, int v) { e[e_cnt] = (Graph){v, fir[u]}, fir[u] = e_cnt++; }
int N, D, f[MAX_N][MAX_N];
void dfs(int x) {
for (int i = 1; i <= N; i++) f[x][i] = 1;
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to; dfs(v);
for (int j = 1; j <= N; j++) f[x][j] = 1ll * f[x][j] * f[v][j] % Mod;
}
for (int i = 1; i <= N; i++) f[x][i] = (f[x][i] + f[x][i - 1]) % Mod;
}
int x[MAX_N], y[MAX_N];
int main () {
clearGraph();
scanf("%d%d", &N, &D);
for (int i = 2, fa; i <= N; i++) scanf("%d", &fa), Add_Edge(fa, i);
dfs(1);
for (int i = 1; i <= N; i++) x[i] = i, y[i] = f[1][i];
printf("%d\n", Lagrange(N, x, y, D));
return 0;
}
【CF995F】Cowmpany Cowmpensation的更多相关文章
- 【CF995F】Cowmpany Cowmpensation(动态规划,拉格朗日插值)
[CF995F]Cowmpany Cowmpensation(多项式插值) 题面 洛谷 CF 题解 我们假装结果是一个关于\(D\)的\(n\)次多项式, 那么,先\(dp\)暴力求解颜色数为\(0. ...
- 【CF995F】 Cowmpany Cowmpensation
CF995F Cowmpany Cowmpensation Solution 这道题目可以看出我的代码能力是有多渣(代码能力严重退化) 我们先考虑dp,很容易写出方程: 设\(f_{i,j}\)表示以 ...
- Python高手之路【六】python基础之字符串格式化
Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...
- 【原】谈谈对Objective-C中代理模式的误解
[原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...
- 【原】FMDB源码阅读(三)
[原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...
- 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新
[原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...
- 【调侃】IOC前世今生
前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...
- Python高手之路【三】python基础之函数
基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...
- Python高手之路【一】初识python
Python简介 1:Python的创始人 Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种解释型.面向对象.动态数据类型的高级程序设计语言,由荷兰人Guido ...
随机推荐
- 问题:alias设置与删除
新建alias条目 临时 alias monitor='gnome-system-monitor' 永久 可以在家目录下,新建 .bash_aliases 文件,然后在其中加上你想要的替换的比 ...
- mvc4中viewbag viewdata 和 tempdata的区别
ViewBag 不再是字典的键值对结构,而是 dynamic 动态类型,它会在程序运行的时候动态解析. eg: ViewBag.NumberObjs = new string[] { "on ...
- SOE 部署错误 ClassFactory cannot supply requested class问题及解决方案
一.问题描述 虽然SOE开发已经老早出来了(ArcGIS 10.1 不再支持DCOM开发,所以以往的基于AO+WebService需要转变思路),不过由于跟工作关联性不是很大,一直未系统学习过.网上下 ...
- DPDK测试用例(sample)编译
前言 要使用DPDK的测试用例,必须先进行编译,以此记录编译的操作,方便日后查找 编译用例 设置环境变量,将DPDK的目录路径添加到编译代码中,RTE_SDK指示DPDK目录路径: export RT ...
- 结合cocos2d-x开发配置sublime text
开发cocos2d-x前端的非核心开发人员对于编辑器的选择,多数的选择有两个,一个是传统的ultraedit,另外的就是现在很流行的sublime text.以前我是比较喜欢用ultraedit的,但 ...
- 修改jupyter notebook的默认路径
我的系统环境是win10,安装了anaconda3 for python 3.6.6首先需要配置notebook的变量环境:打开 cmd 输入命令 jupyter notebook --generat ...
- android实现静默安装demo
1.须要RootTools.jar 2.运行脚本 public class InstallerActivity extends Activity { /** Called when the a ...
- zookeeper报错 JAVA_HOME is not set
很多开发者安装zookeeper的时候,应该会发现到这么一个问题: JAVA_HOME is not set 好的!那么这个是什么意思呢? 就是说你的 JAVA_HOME 变量没有设定 为什么会提示 ...
- 嵌入式STM32开发环境之Keil5的安装(附资源)--
全文copy,原文见https://blog.csdn.net/weixin_42602730/article/details/81007685 --------------------------- ...
- Mysql-常用数据的基本操作和基本形式
一 .介绍 二 .插入数据INSERT 三 .更新数据UPDATE 四 .删除数据DELETE 五 .查询数据SELECT 六 .权限管理 一. 介绍 MySQL数据操作: DML ========= ...