【CF995F】Cowmpany Cowmpensation
【CF995F】Cowmpany Cowmpensation
题面
树形结构,\(n\)个点,给每个节点分配工资\([1,d]\),子节点不能超过父亲节点的工资,问有多少种分配方案
其中\(n\leq3000,d\leq10^9\)
题解
先上一个\(O(nd)\)的\(dp\):
设\(f[u][j]\)表示点\(u\)分配的工资为\(j\)的方案数
那么转移时:
先转移\(f[u][j]=\prod_{v\in son_u}f[v][j]\)
再转移\(f[u][j]=f[u][j]+f[u][j-1]\)
然后我们根据转移,假装最后结果\(f[1][x]=y\)是一个\(n\)次多项式上的一些点
然后我们把\(D\)插值,发现,诶。。。居然对了。。。好敷衍
那么我们只做一个\(O(n^2)\)的\(dp\),将\(dp[1][0]...dp[1][n]\)看作点就可以了
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAX_N = 3e3 + 5, Mod = 1e9 + 7;
int fpow(int x, int y) {
int res = 1;
while (y) {
if (y & 1) res = 1ll * res * x % Mod;
x = 1ll * x * x % Mod;
y >>= 1;
}
return res;
}
int Lagrange(int n, int *x, int *y, int xi) {
int res = 0;
for (int i = 1; i <= n; i++) {
int s1 = 1, s2 = 1;
for (int j = 0; j <= n; j++)
if (i != j) {
s1 = 1ll * (xi - x[j]) % Mod * s1 % Mod;
s2 = 1ll * (x[i] - x[j]) % Mod * s2 % Mod;
}
res = (res + 1ll * y[i] * s1 % Mod * fpow(s2, Mod - 2) % Mod) % Mod;
res = (res + Mod) % Mod;
}
return res;
}
struct Graph { int to, next; } e[MAX_N << 1]; int fir[MAX_N], e_cnt;
void clearGraph() { memset(fir, -1, sizeof(fir)); e_cnt = 0; }
void Add_Edge(int u, int v) { e[e_cnt] = (Graph){v, fir[u]}, fir[u] = e_cnt++; }
int N, D, f[MAX_N][MAX_N];
void dfs(int x) {
for (int i = 1; i <= N; i++) f[x][i] = 1;
for (int i = fir[x]; ~i; i = e[i].next) {
int v = e[i].to; dfs(v);
for (int j = 1; j <= N; j++) f[x][j] = 1ll * f[x][j] * f[v][j] % Mod;
}
for (int i = 1; i <= N; i++) f[x][i] = (f[x][i] + f[x][i - 1]) % Mod;
}
int x[MAX_N], y[MAX_N];
int main () {
clearGraph();
scanf("%d%d", &N, &D);
for (int i = 2, fa; i <= N; i++) scanf("%d", &fa), Add_Edge(fa, i);
dfs(1);
for (int i = 1; i <= N; i++) x[i] = i, y[i] = f[1][i];
printf("%d\n", Lagrange(N, x, y, D));
return 0;
}
【CF995F】Cowmpany Cowmpensation的更多相关文章
- 【CF995F】Cowmpany Cowmpensation(动态规划,拉格朗日插值)
[CF995F]Cowmpany Cowmpensation(多项式插值) 题面 洛谷 CF 题解 我们假装结果是一个关于\(D\)的\(n\)次多项式, 那么,先\(dp\)暴力求解颜色数为\(0. ...
- 【CF995F】 Cowmpany Cowmpensation
CF995F Cowmpany Cowmpensation Solution 这道题目可以看出我的代码能力是有多渣(代码能力严重退化) 我们先考虑dp,很容易写出方程: 设\(f_{i,j}\)表示以 ...
- Python高手之路【六】python基础之字符串格式化
Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...
- 【原】谈谈对Objective-C中代理模式的误解
[原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...
- 【原】FMDB源码阅读(三)
[原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...
- 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新
[原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...
- 【调侃】IOC前世今生
前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...
- Python高手之路【三】python基础之函数
基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...
- Python高手之路【一】初识python
Python简介 1:Python的创始人 Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种解释型.面向对象.动态数据类型的高级程序设计语言,由荷兰人Guido ...
随机推荐
- JAVA Color类
Color类用于定义颜色,java.awt.Color中提供了13个预定义的常量用来表示13中标准颜色,分别是: public static final Color white白色. public s ...
- visual stdio 安装OpenGL库文件
1.将下载的压缩包解开.将得到5个文件 1. 将glut解压出来,将当中的glut.h拷贝到C:\Program Files (x86)\Microsoft Visual Studio 11.0\VC ...
- VMware Harbor 学习
Harbor简介 Harbor是一个用于存储和分发Docker镜像的企业级Registry服务器,通过添加一些企业必需的功能特性,例如安全.标识和管理等,扩展了开源Docker Distributio ...
- 随手练——POJ - 2676 数独 (回溯法)
POJ - 2676 : http://poj.org/problem?id=2676: 解题思想 (大力出奇迹): 1. 依次在空格里面填上“1~9”,并检查这个数字是否合法(其所在的行.列,以及3 ...
- Kali-linux分析密码
在实现密码破解之前,介绍一下如何分析密码.分析密码的目的是,通过从目标系统.组织中收集信息来获得一个较小的密码字典.本节将介绍使用Ettercap工具或MSFCONSOLE来分析密码. 8.2.1 E ...
- size和len
size函数只能用于计算array,不能用于计算list,返回的是数组的元素个数 len函数既可以计算array,也可以计算list >>> a = np.array([1,2]) ...
- [转]墨卡托投影坐标系(Mercator Projection)原理及实现C代码
墨卡托投影是一种“等角正切圆柱投影”,荷兰地图学家墨卡托(Mercator)在1569年拟定:假设地球被围在一个中空的圆柱里,其赤道与圆柱相接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体 ...
- JAVA:字符串反转
import java.util.ArrayList;import java.util.Arrays;import java.util.Collections;import java.util.Lis ...
- 404 Note Found队-Alpha2
目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:丹丹 组员7:家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示组内 ...
- 轻量ORM-SqlRepoEx (十四)最佳实践之Dapper(1)
简介:SqlRepoEx是 .Net平台下兼容.NET Standard 2.0人一个轻型的ORM.解决了Lambda转Sql语句这一难题,SqlRepoEx使用的是Lambda表达式,所以,对c#程 ...