简单线性dp
小zc现在有三个字符串,他想知道前两个字符串能不能生成第三个字符串,生成规则如下:第一个串的每个字符都可以往第二个串的任意位置插入(包括首尾位置),但必须保证来源于第一个串中的字符在生成后的串中的相对顺序不可以改变。
举个例子:
String A: cu
String B: mt
那么,A和B可以生成的所有字符串是{cumt,cmut,cmtu,mcut,mctu,mtcu},而不能生成ucmt,因为uc来源于A串,但改变了A中字符原来的相对顺序。
但小zc觉得这个问题太简单,于是他想让你计算对于给定的A, B, C串,共有多少种方案能够生成C串。方便起见,你只需要输出最后答案对1000000007取模的值。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std;
const int mod = 1e9+;
const int N = ;
int l1,l2,l3,dp[N][N];
//dp[i][j]表示已经匹配了s1前i个字符,s2前j个字符的方案数
char s1[N],s2[N],s3[N*]; void solve() {
memset(dp,,sizeof(dp));
dp[][] =;
rep(i,,l1) {
if(s1[i] == s3[i])
dp[i][] = dp[i-][];
}
rep(i,,l2) {
if(s2[i] == s3[i])
dp[][i] = dp[][i-];
} rep(i,,l1) {
rep(j,,l2) {
if(s1[i] == s3[i+j]) {
dp[i][j] = (dp[i][j] + dp[i-][j]) %mod;
}
if(s2[j] == s3[i+j]) {
dp[i][j] = (dp[i][j] + dp[i][j-]) %mod;
}
}
}
cout << dp[l1][l2] <<endl;
} int main(){
int T; scanf("%d",&T);
while (T--) {
scanf("%s %s %s",s1+,s2+,s3+);
l1 = strlen(s1+);
l2 = strlen(s2+);
l3 = strlen(s3+);
solve();
}
return ;
}
简单线性dp的更多相关文章
- HDU-1260.Tickets(简单线性DP)
本题大意:排队排票,每个人只能自己单独购买或者和后面的人一起购买,给出k个人单独购买和合买所花费的时间,让你计算出k个人总共花费的时间,然后再稍作处理就可得到答案,具体格式看题意. 本题思路:简单dp ...
- 1047 - Neighbor House(简单线性DP)
题目大意: 给你n个房子,要求把房子染成R,G,B三种的一种颜色, 要求相邻的颜色不能一样. dp[第i个房子][第j种颜色] 转移一下就行了. #include<cstdio&g ...
- HDU 2709 Sumsets 经典简单线性dp
Sumsets Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Sub ...
- UVA-11584 Partitioning by Palindromes (简单线性DP)
题目大意:给一个全是小写字母的字符串,判断最少可分为几个回文子序列.如:“aaadbccb” 最少能分为 “aaa” “d” “bccb” 共三个回文子序列,又如 “aaa” 最少能分为 1 个回文子 ...
- HDU 2157 How many ways??(简单线性DP | | 矩阵快速幂)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2157 这道题目很多人的题解都是矩阵快速幂写的,矩阵快速幂倒是麻烦了许多了.先给DP的方法 dp[i][ ...
- lightoj1047 【简单线性DP】
因为写不出hdu3401...好像要用单调队列优化...这边水了一个... 题意: 给n个房子涂色,给出n个房子对应颜色的花费,问涂完所有颜色花费最少. 保证相邻房子颜色不能相同. 思路: dp[i] ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- 『最大M子段和 线性DP』
最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...
- 线性DP总结(LIS,LCS,LCIS,最长子段和)
做了一段时间的线性dp的题目是时候做一个总结 线性动态规划无非就是在一个数组上搞嘛, 首先看一个最简单的问题: 一,最长字段和 下面为状态转移方程 for(int i=2;i<=n;i++) { ...
随机推荐
- JavaWeb温习之HttpServletResponse对象
以下内容均根据"方立勋JavaWeb视频教程"进行总结 1. HttpServletResponse常见应用——设置响应头控制浏览器的行为 1.1 设置http响应头控制浏览器禁止 ...
- web图片100%宽度自适应,高度不塌陷
一般在web端图片100%自适应,在页面加载的时候存在高度塌陷的问题 解决这个问题其实很简单,用padding-top设置百分比值来实现自适应,公式如下 padding-top = (Image He ...
- 【BZOJ2946】[Poi2000]公共串 后缀数组+二分
[BZOJ2946][Poi2000]公共串 Description 给出几个由小写字母构成的单词,求它们最长的公共子串的长度. 任务: l 读入单词 l 计 ...
- 【Enterprise Architect 】
[Enterprise Architect ]Enterprise Architect 8 key {67SC0O95-SZPS-LIG2-YQ8Q-8D2N-KWTD-0W6R-TWDD-KT6RB ...
- linux下nproc的作用
文章来源: http://blog.csdn.net/odailidong/article/details/50561257 nproc是操作系统级别对每个用户创建的进程数的限制,在Linux下运行多 ...
- dubbo有什么作用
转自:http://blog.csdn.net/ichsonx/article/details/39008519 1. Dubbo是什么? Dubbo是一个分布式服务框架,致力于提供高性能和透明化的R ...
- Thinkphp自定义工具类的使用!
在使用Thinkphp做开发的时候,很多时候会用到一些自己写的类,为了方便管理,可以把这些类,单独放到一个文件里. 这就是自定义工具类: 首先在 Application 目录下新建 Component ...
- 整数快速幂hdu(1852)
hdu1852 Beijing 2008 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/65535 K (Java/Others ...
- Windows 7 Ultimate(旗舰版)SP1 32/64位官方原版下载地址
MSDN于2011年5月12日,最新发布简体中文Windows 7 Ultimate 旗舰版 SP1 DVD镜像安装包,分32位和64位两个版本.最新发行代号分别是:677486(32位),67740 ...
- 麦子学院bootstrap实战项目官网,后台,jquery.singlePageNav.min.js ,wow.min.js,animate.css使用
1.源码笔记 我的源码+笔记(很重要):链接: https://pan.baidu.com/s/1eSxgLV0 密码: 2pi2 感谢麦子学院项目相关视频:链接: https://pan.baidu ...