BZOJ 3566 [SHOI2014]概率充电器 ——期望DP
期望DP。
补集转化,考虑不能被点亮的情况,
然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它。
第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次
#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define maxn 1000005 int n;
int h[maxn],to[maxn],ne[maxn],en=0;
double w[maxn],f[maxn],g[maxn],tmp[maxn]; void add(int a,int b,double p)
{to[en]=b;ne[en]=h[a];w[en]=p;h[a]=en++;} void dfs1(int o,int fa)
{
for (int i=h[o];i>=0;i=ne[i])
if (to[i]!=fa){
dfs1(to[i],o);
tmp[to[i]]=f[to[i]]+(1-f[to[i]])*(1-w[i]);
f[o]*=tmp[to[i]];
}
} void dfs2(int o,int fa)
{
double t;
for (int i=h[o];i>=0;i=ne[i])
if (to[i]!=fa)
{
t=tmp[to[i]]<1e-6?0:g[o]*f[o]/tmp[to[i]];
g[to[i]]=t+(1-t)*(1-w[i]);
dfs2(to[i],o);
}
} int main()
{
memset(h,-1,sizeof h);
scanf("%d",&n);
for (int i=1;i<n;++i)
{
int a,b,p;
scanf("%d%d%d",&a,&b,&p);
add(a,b,p/100.0);add(b,a,p/100.0);
}
int c;
F(i,1,n) scanf("%d",&c),f[i]=1-c/100.0;
dfs1(1,0); g[1]=1.0; dfs2(1,-1);
double ans=0.0;
F(i,1,n) ans+=1-f[i]*g[i];
printf("%.6lf\n",ans);
}
BZOJ 3566 [SHOI2014]概率充电器 ——期望DP的更多相关文章
- BZOJ 3566: [SHOI2014]概率充电器( 树形dp )
通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...
- BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]
3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...
- bzoj 3566: [SHOI2014]概率充电器
Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器:"采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率 ...
- bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp
题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...
- BZOJ.3566.[SHOI2014]概率充电器(概率DP 树形DP)
BZOJ 洛谷 这里写的不错,虽然基本还是自己看转移... 每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\). 把\(F_x\)分成:父节点通电给 ...
- bzoj 3566: [SHOI2014]概率充电器【树形概率dp】
设g[u]为这个点被儿子和自己充上电的概率,f[u]为被儿子.父亲和自己充上电的概率 然后根据贝叶斯公式(好像是叫这个),1.P(A+B)=P(A)+P(B)-P(A)*P(B),2.P(A)=(P( ...
- ●BZOJ 3566 [SHOI2014]概率充电器
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3566题解: 概率dp,树形dp 如果求出每个点被通电的概率t, 那么期望答案就是t1×1+t ...
- bzoj 3566 [SHOI2014]概率充电器——树型
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3566 一眼看上去高斯消元.n^3不行. 竟然直接去看了TJ.发现树型dp.一下想到了自己还没 ...
- 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...
随机推荐
- iis的网站发布
1.打开IIS服务器,添加“新网站”,命名网站的名称.物理路径(存放index.aspx的文件路径).ip地址和端口:2.在已经添加的网站,启用“目录浏览”,“默认文档”设置将要打开的网页 注:(1) ...
- com.alibaba.dubbo.remoting.RemotingException: Failed to bind NettyServer on /192.168.1.13:20881, cause: Failed to bind to: /0.0.0.0:20881
抛出的异常如上,解决方案是:根据异常信息确定是端口被占用,排查项目是否启动之后没有关闭,在windows命令行中运行如下命令:netstat -ano 检查端口占用的情况,根据pid在任务管理器中杀死 ...
- Netbeans使用笔记
Netbeans 新建项目 A brand new project 选择"文件">"新建项目"以打开新建项目向导. 在向导中,选择 "C/C++ ...
- UVALive 4080 Warfare And Logistics (最短路树)
很多的边会被删掉,需要排除一些干扰进行优化. 和UVA - 1279 Asteroid Rangers类似,本题最关键的地方在于,对于一个单源的最短路径来说,如果最短路树上的边没有改变的话,那么最短路 ...
- JavaWeb项目实现图片验证码
一.什么是图片验证码? 可以参考下面这张图: 我们在一些网站注册的时候,经常需要填写以上图片的信息. 这种图片验证方式是我们最常见的形式,它可以有效的防范恶意攻击者采用恶意工具,调用“动态验证码短信获 ...
- nyoj-248-buying feed
http://acm.nyist.net/JudgeOnline/problem.php?pid=248 BUYING FEED 时间限制:3000 ms | 内存限制:65535 KB 难度:4 ...
- jQuery和CSS的拍摄效果
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- linux虚拟机安装值得注意的几点
1.建立新的虚拟机时选择自定义安装并选择稍后安装操作系统 2.关键安装命令 tar -xzvf VMwareTools-10.0.6-3595377.tar.gz sudo ./wmware-ins ...
- Codeforces 727C Guess the Array
题目传送门 长度为\(n\)的数组,询问\(n\)次来求出数组中每一个数的值 我们可以先询问三次 \(a[1]+a[2]\) \(a[1]+a[3]\) \(a[2]+a[3]\) 然后根据这三次询问 ...
- hihoCoder第一周---最长回文子串(1032)
其实这就是mancher算法的板子题,贴个代码好了. 思想请见我的另一篇博客: https://blog.csdn.net/qq_41090676/article/details/86768361 # ...