BZOJ 3566 [SHOI2014]概率充电器 ——期望DP
期望DP。
补集转化,考虑不能被点亮的情况,
然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它。
第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次
#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define maxn 1000005 int n;
int h[maxn],to[maxn],ne[maxn],en=0;
double w[maxn],f[maxn],g[maxn],tmp[maxn]; void add(int a,int b,double p)
{to[en]=b;ne[en]=h[a];w[en]=p;h[a]=en++;} void dfs1(int o,int fa)
{
for (int i=h[o];i>=0;i=ne[i])
if (to[i]!=fa){
dfs1(to[i],o);
tmp[to[i]]=f[to[i]]+(1-f[to[i]])*(1-w[i]);
f[o]*=tmp[to[i]];
}
} void dfs2(int o,int fa)
{
double t;
for (int i=h[o];i>=0;i=ne[i])
if (to[i]!=fa)
{
t=tmp[to[i]]<1e-6?0:g[o]*f[o]/tmp[to[i]];
g[to[i]]=t+(1-t)*(1-w[i]);
dfs2(to[i],o);
}
} int main()
{
memset(h,-1,sizeof h);
scanf("%d",&n);
for (int i=1;i<n;++i)
{
int a,b,p;
scanf("%d%d%d",&a,&b,&p);
add(a,b,p/100.0);add(b,a,p/100.0);
}
int c;
F(i,1,n) scanf("%d",&c),f[i]=1-c/100.0;
dfs1(1,0); g[1]=1.0; dfs2(1,-1);
double ans=0.0;
F(i,1,n) ans+=1-f[i]*g[i];
printf("%.6lf\n",ans);
}
BZOJ 3566 [SHOI2014]概率充电器 ——期望DP的更多相关文章
- BZOJ 3566: [SHOI2014]概率充电器( 树形dp )
通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...
- BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]
3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...
- bzoj 3566: [SHOI2014]概率充电器
Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器:"采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率 ...
- bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp
题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...
- BZOJ.3566.[SHOI2014]概率充电器(概率DP 树形DP)
BZOJ 洛谷 这里写的不错,虽然基本还是自己看转移... 每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\). 把\(F_x\)分成:父节点通电给 ...
- bzoj 3566: [SHOI2014]概率充电器【树形概率dp】
设g[u]为这个点被儿子和自己充上电的概率,f[u]为被儿子.父亲和自己充上电的概率 然后根据贝叶斯公式(好像是叫这个),1.P(A+B)=P(A)+P(B)-P(A)*P(B),2.P(A)=(P( ...
- ●BZOJ 3566 [SHOI2014]概率充电器
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3566题解: 概率dp,树形dp 如果求出每个点被通电的概率t, 那么期望答案就是t1×1+t ...
- bzoj 3566 [SHOI2014]概率充电器——树型
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3566 一眼看上去高斯消元.n^3不行. 竟然直接去看了TJ.发现树型dp.一下想到了自己还没 ...
- 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...
随机推荐
- CPU性能的评价
人们通常用benchmark 来衡量CPU的性能,常见的benchmark有dhrystone和coremark. 由于dhrystone 受编译器影响比较大,所以,结果不是很准确,现在大多采用cor ...
- SqlDbx远程链接DB2数据库
1.首先下载IBM的IBM Data Server Client,百度云链接:http://pan.baidu.com/s/1kVBVjan 密码:2gtz 2.安装好客户端之后,打开cmd,运行db ...
- 如何在Kubernetes里创建一个Nginx service
Jerry之前的文章如何在Kubernetes里创建一个Nginx应用,已经使用kubectl命令行创建了Pod,但是在kubernetes中,Pod的IP地址会随着Pod的重启而变化,因此用Pod的 ...
- python_112_网络编程 Socket编程
实例1:客户端发小写英文,服务器端返回给客户端大写英文(仅支持一次接受发送) 服务器端: #服务器端(先于客户端运行) import socket server=socket.socket() ser ...
- 公共Service的抽取小例
package cn.sxx.service; import java.util.List; public interface BaseService<T,Q> { public void ...
- hibernate的注解
1.many-to-one @ManyToOne @JoinColumn(name = "user_id") 2.many-to-many /** * 双向关联关系中,有且仅有一端 ...
- js解析json格式
function save(){ var value2 = { "china":[ {"name":"hangzhou", "it ...
- iOS开发遇见的坑之二:工程文件中插件和自身工程命名冲突
在升级cocoapod后,我重新管理了一下工程,其实也就是把各个类分类进行管理 类似于这样 然后编译就发现不能运行 1.其中一个错误是工程文件缺失,根据提示添加进来进行 2.有一个是pch的相对路径变 ...
- Java 局部变量未初始化会报错,局部变量没有初始值,成员变量有初始值
Java 成员变量有初始值,而局部变量没有初始值. 如下所示,代码不能编译通过 public static void main(String[] args){ String s; Sy ...
- rz
Linux系统简单易用的上传下载命令rz和sz sudo yum install lrzsz -y 上传:rz 下载:sz