洛谷P1447 - [NOI2010]能量采集
Description
给出\(n,m(n,m\leq10^5),\)计算$$ \sum_{i=1}^n \sum_{j=1}^m (2gcd(i,j)-1)$$
Solution
简单起见我们来钦定\(n\leq m\),然后计算\(\sum_{i=1}^n \sum_{j=1}^m gcd(i,j)\)。
$$ ans = \sum_{d=1}^n d \sum_{k=1}^{⌊\frac{n}{d}⌋} \mu(k)⌊\frac{n}{kd}⌋⌊\frac{m}{kd}⌋ $$然后我们就可以计算了。
> 时间复杂度$O(n\sqrt n)$。
##Code
```cpp
//[NOI2010]能量采集
#include <algorithm>
#include <cstdio>
using std::min; using std::swap;
typedef long long lint;
int const N=1e5+10;
int n,m;
int mu[N],pre[N];
int cntP,pr[N]; bool notP[N];
void init(int n)
{
mu[1]=1;
for(lint i=2;i<=n;i++)
{
if(!notP[i]) pr[++cntP]=i,mu[i]=-1;
for(int j=1;j<=cntP;j++)
{
lint x=pr[j]*i; if(x>n) break;
notP[x]=true;
if(i%pr[j]) mu[x]=-mu[i]; else {mu[x]=0; break;}
}
}
for(int i=1;i<=n;i++) pre[i]=pre[i-1]+mu[i];
}
int main()
{
scanf("%d%d",&n,&m); if(n>m) swap(n,m);
init(m);
lint ans=0;
for(int g=1;g<=n;g++)
{
int n0=n/g,m0=m/g; lint res=0;
for(int L=1,R;L<=n0;L=R+1)
{
int v1=n0/L,v2=m0/L; R=min(n0/v1,m0/v2);
res+=1LL*v1*v2*(pre[R]-pre[L-1]);
}
ans+=res*g;
}
printf("%lld\n",ans*2-1LL*n*m);
return 0;
}
```\]
洛谷P1447 - [NOI2010]能量采集的更多相关文章
- 洛谷 P2158 [SDOI2008]仪仗队 && 洛谷 P1447 [NOI2010]能量采集
https://www.luogu.org/problemnew/show/P2158 以人所在位置为(0,0)建立坐标系, 显然除了(0,1)和(1,0)外,可以只在坐标(x,y)的gcd(x,y) ...
- 洛谷P1447 [NOI2010]能量采集(容斥)
传送门 很明显题目要求的东西可以写成$\sum_{i=1}^{n}\sum_{j=1}^m gcd(i,j)*2-1$(一点都不明显) 如果直接枚举肯定爆炸 那么我们设$f[i]$表示存在公因数$i$ ...
- 洛谷 P1447 [NOI2010]能量采集 (莫比乌斯反演)
题意:问题可以转化成求$\sum_{i=1}^{n}\sum_{j=1}^{m}(2*gcd(i,j)-1)$ 将2和-1提出来可以得到:$2*\sum_{i=1}^{n}\sum_{j=1}^{m} ...
- 洛谷 1447 [NOI2010]能量采集——容斥/推式子
题目:https://www.luogu.org/problemnew/show/P1447 1.容斥原理 求 f [ i ] 表示 gcd==i 的对数,先 f [ i ] = (n/i) * (m ...
- P1447 [NOI2010]能量采集
题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共 ...
- Luogu P1447 [NOI2010]能量采集
Preface 最近反演题做多了看什么都想反演.这道题由于数据弱,解法多种多样,这里简单分析一下. 首先转化下题目就是对于一个点\((x,y)\),所消耗的能量就是\(2(\gcd(x,y)-1)+1 ...
- Luogu P1447 [NOI2010]能量采集 数论??欧拉
刚学的欧拉反演(在最后)就用上了,挺好$qwq$ 题意:求$\sum_{i=1}^{N}\sum_{j=1}^{M}(2*gcd(i,j)-1)$ 原式 $=2*\sum_{i=1}^{N}\sum_ ...
- luogu P1447 [NOI2010]能量采集 欧拉反演
题面 题目要我们求的东西可以化为: \[\sum_{i=1}^{n}\sum_{j=1}^{m}2*gcd(i,j)-1\] \[-nm+2\sum_{i=1}^{n}\sum_{j=1}^{m}gc ...
- bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005 洛谷 P1447 https://www.luogu.org/ ...
随机推荐
- bunzip2命令
bunzip2——解压缩.bz2格式文件 命令所在路径:/usr/bin/bunzip2 示例1: # bunzip2 yum.log.bz2 解压当前目录下的yum.log.bz2为yum.log, ...
- 理想路径——双向BFS
题目 给n个点m条边(2 ≤ n ≤ 100000,1 ≤ m ≤ 200000)的无向图,每条边上都涂有一种颜色.求从结点1到结点n的一条路径,使得经过的边数尽量的少,在此前提下,经过边的颜色序列的 ...
- 给我说说你能想到几种分布式session实现
附录: https://mp.weixin.qq.com/s/8Hh4j0CjfF5S8zM29JZl2w # 面试官心理分析 面试官问了你一堆 dubbo 是怎么玩儿的,你会玩儿 dubbo 就可以 ...
- python基础一 day11 装饰器(1)
接收的时候是聚合,调用的时候是打散 print(*args)本来在里面用的时候是用args,是一个元祖,加上一个 * 号,把元祖解包了(打散了). from functools import ...
- python 实例方法,类方法,静态方法,普通函数
python中有实例方法,类方法,静态方法,普通函数 类方法需要@ classmethod 修饰并且有个隐藏参数 cls,实例方法必须有个参数 self, 静态方法必须有 @staticmethod修 ...
- C++判断两个double类型双精度浮点数是否同号
看到的一种整数的方法 != y < ) 由此, double x,y; == fabs( ) { } 目前想到的比较合适判断方法. 此外这里还有一种强制转换类型求符号位的方法. /** * Ge ...
- 【转】Intellij Idea识别Java Web项目
使用maven生成一个Java项目,手动添加相应的web目录WEB_INF,web.xml等,此时idea没有自动识别为web项目,此时编辑web.xml文件会出现一些不该出现的错误,需要做的就是让i ...
- Mac 安装和卸载 Mysql5.7.11 的方法
安装 去http://www.mysql.com/downloads/, 选择最下方的MySQL Community Edition,点击MySQL Community Server的download ...
- javaEE(9)_在线支付
一.目前主要的两种支付方案 二.支付流程 1.用户在提交订单完成选择易宝支付按钮后,会跳转到如下页面选择要支付的银行,如下所示: <!DOCTYPE HTML PUBLIC "-//W ...
- 【树形dp】7.14城市
很典型的按照边考虑贡献的题. 题目描述 小A居住的城市可以认为由n个街区组成.街区从1到n依次标号街区与街区之间由街道相连,每个街区都可以通过若干条街道到达任意一个街区,共有n-1条街道.其中标号为i ...